Quaternion Correlation Filters for Illumination Invariant Face Recognition

  • Dayron Rizo-Rodriguez
  • Heydi Méndez-Vázquez
  • Edel García
  • César San Martín
  • Pablo Meza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

Illumination variations is one of the factors that causes the degradation of face recognition systems performance. The representation of face image features using the structure of quaternion numbers is a novel way to alleviate the illumination effects on face images. In this paper a comparison of different quaternion representations, based on verification and identification experiments, is presented. Four different face features approaches are used to construct quaternion representations. A quaternion correlation filter is used as similarity measure, allowing to process together all the information encapsulated in quaternion components. The experiment results confirms that using quaternion algebra together with existing face recognition techniques permits to obtain more discriminative and illumination invariant methods.

Keywords

Face Recognition Local Binary Pattern Quaternion Algebra Illumination Variation False Rejection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7) (1997)Google Scholar
  2. 2.
    Zou, X., Kittler, J., Messer, K.: Illumination invariant face recognition: A survey. In: BTAS 2007 (September 2007)Google Scholar
  3. 3.
    Rizo-Rodríguez, D., Méndez-Vázquez, H., García-Reyes, E.: Illumination Invariant Face Image Representation Using Quaternions. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 434–441. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bayro, E.: Geometric Computing for Perception Action Systems, pp. 115–136. Springer, New York (2001)Google Scholar
  5. 5.
    Chunyan, X., Savvides, M., Vijayakumar, B.: Quaternion correlation filters for face recognition in wavelet domain. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (2005)Google Scholar
  6. 6.
    Marcel, S., Rodriguez, Y., Heusch, G.: On the recent use of local binary patterns for face authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing (2007) IDIAP-RR 06-34Google Scholar
  7. 7.
    Chen, W., Er, M.J., Wu, S.: Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Transactions on Systems, Man and Cybernetics, Part B 36(2), 458–466 (2006)CrossRefGoogle Scholar
  8. 8.
    Hamilton, W.: Elements of Quaternions. Longmans, Green, London, UK (1866)Google Scholar
  9. 9.
    Garea, E., Kittler, J., Messer, K., Mendez, H.: An illumination insensitive representation for face verification in the frequency domain. In: IEEE Computer Society, ICPR 2006, pp. 215–218 (2006)Google Scholar
  10. 10.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Moxey, C., Sangwine, S., Ell, T.: Hypercomplex correlation techniques for vector images. IEEE Transaction on Signal Processing 51, 1941–1953 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Vijayakumar, B., Savvides, K., Venkataramani, K., Xie, C.: Spatial frequency domain image processing for biometric recognition. In: IEEE International Conference on Image Processing, pp. 53–56 (2002)Google Scholar
  13. 13.
    Messer, K., Matas, J., Kittler, J., Jonsson, K.: Xm2vtsdb: The extended m2vts database. In: Second International Conference on Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  14. 14.
    Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dayron Rizo-Rodriguez
    • 1
  • Heydi Méndez-Vázquez
    • 1
  • Edel García
    • 1
  • César San Martín
    • 2
  • Pablo Meza
    • 3
  1. 1.Advanced Technologies Application CenterHavanaCuba
  2. 2.Center for Optics and PhotonicsUniversity of La FronteraTemucoChile
  3. 3.Center for Optics and PhotonicsUniversity of ConcepciónConcepciónChile

Personalised recommendations