Dissimilarity-Based Classifications in Eigenspaces

  • Sang-Woon Kim
  • Robert P. W. Duin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


This paper presents an empirical evaluation on a dissimilarity measure strategy by which dissimilarity-based classifications (DBCs) [10] can be efficiently implemented. In DBCs, classifiers are not based on the feature measurements of individual objects, but rather on a suitable dissimilarity measure among the objects. In image classification tasks, however, one of the most intractable problems to measure the dissimilarity is the distortion and lack of information caused by the differences in illumination and directions and outlier data. To overcome this problem, in this paper, we study a new way of performing DBCs in eigenspaces spanned, one for each class, by the subset of principal eigenvectors, extracted from the training data set through a principal component analysis. Our experimental results, obtained with well-known benchmark databases, demonstrate that when the dimensionality of the eigenspaces has been appropriately chosen, the DBCs can be improved in terms of classification accuracies.


Error Rate Face Recognition Face Image Dissimilarity Matrix Manhattan Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. and Machine Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  2. 2.
    Bicego, M., Murino, V., Figueiredo, M.A.T.: Similarity-based classification of sequences using hidden Markov models. Pattern Recognition 37, 2281–2291 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Friedman, M., Kandel, A.: Introduction to Pattern Recognition - Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific, New Jersey (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. and Machine Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  5. 5.
    Kim, S.-W., Gao, J.: A Dynamic Programming Technique for Optimizing Dissimilarity-Based Classifiers. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 654–663. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Kim, S.-W., Duin, R.P.W.: On improving dissimilarity-based classifications using a statistical similarity measure. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 418–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face-recognition algorithms. Perception 30, 303–321 (2001)CrossRefGoogle Scholar
  8. 8.
    Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press (1983)Google Scholar
  9. 9.
    Orozco-Alzate, M., Duin, R.P.W., Castellanos-Dominguez, G.: A generalization of dissimilarity representations using feature lines and feature planes. Pattern Recognition Letters 30, 242–254 (2009)CrossRefGoogle Scholar
  10. 10.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific Publishing, Singapore (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proc. of the 8th IEEE Int’l Conf. on Computer Vision, Vancouver, Canada, pp. 755–762 (2001)Google Scholar
  12. 12.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database of human faces, Technical Report RI-TR-01-02, Carnegie Mellon Univ., Pittsburgh, PA (2001)Google Scholar
  13. 13.
    Sørensen, L., Loog, M., Lo, P., Ashraf, H., Dirksen, A., Duin, R.P.W., de Bruijne, M.: Image dissimilarity-based quantification of lung disease from CT. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 37–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Wilson, C.L., Garris, M.D.: Handprinted Character Database 3. Technical Report, National Institute of Standards and Technology, Gaithersburg, Maryland (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sang-Woon Kim
    • 1
  • Robert P. W. Duin
    • 2
  1. 1.Dept. of Computer Science and EngineeringMyongji UniversityYonginSouth Korea
  2. 2.Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyThe Netherlands

Personalised recommendations