Thermal Noise Estimation and Removal in MRI: A Noise Cancellation Approach

  • Miguel E. Soto
  • Jorge E. Pezoa
  • Sergio N. Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this work a closed-form, maximum-likelihood (ML) estimator for the variance of the thermal noise in magnetic resonance imaging (MRI) systems has been developed. The ML estimator was, in turn, used as a priori information for devising a single dimensional noise-cancellation–based image restoration algorithm. The performance of the estimator was assessed theoretically by means of the Crámer-Rao lower bound, and the effect of selecting an appropriate set of no-signal pixels on estimating the noise variance was also investigated. The effectivity of the noise-cancellation–based image restoration algorithm in compensating for the thermal noise in MRI was also evaluated. Actual MRI data from the LONI database was employed to assess the performance of both the ML estimator and the image restoration algorithm.


Thermal Noise Noise Variance Noisy Image Magnetic Resonance Imaging Data Rayleigh Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vovk, U., et al.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. on Medical Imaging 26(3), 405–421 (2007)CrossRefGoogle Scholar
  2. 2.
    Sijbers, J., et al.: Maximum-likelihood estimation of rician distribution parameters. IEEE Trans. on Medical Imaging 17(3), 357–361 (1998)CrossRefGoogle Scholar
  3. 3.
    Aja-Fernandez, S., et al.: Noise and signal estimation in magnitude MRI and rician distributed images: A lmmse approach. IEEE Trans. on Image Proc. 17(8), 1383–1398 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sijbers, J., et al.: Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Physics Medicine & Biology 52(5), 1335–1348 (2007)CrossRefGoogle Scholar
  5. 5.
    Kruggel, F., et al.: Comparison of filtering methods for fMRI datasets. NeuroImage 10, 530–543 (1999)CrossRefGoogle Scholar
  6. 6.
    Nowak, R.D.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Trans. on Image Processing 8(10), 1408–1419 (1999)CrossRefGoogle Scholar
  7. 7.
    Kisner, S.J., Talavage, T.M.: Testing the distribution of nonstationary mri data. Eng. in Medicine & Biology Soc. 3, 1888–1891 (2004)Google Scholar
  8. 8.
    Xu, Y., et al.: COmplex-Model-Based Estimation of thermal noise for fMRI data in the presence of artifacts. Mag. Resonance Imaging 25, 1079–1088 (2007)CrossRefGoogle Scholar
  9. 9.
    van Kempen, G., van Vliet, L.: The influence of the background estimation on the superresolution properties of non-linear image restoration algorithms. In: Proc. SPIE Progress Biomedical Optics, vol. 3605, pp. 179–189 (1999)Google Scholar
  10. 10.
    Brummer, M.E., et al.: Automatic detection of brain contours in MRI data sets. IEEE Trans. Medical Imaging 12, 153–168 (1993)CrossRefGoogle Scholar
  11. 11.
    Poor, H.V.: An Introduction to Signal Detection and Estimation, 2nd edn. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Proakis, J.G., Manolakis, D.G.: Digital signal processing: principles, algorithms, and applications, 4th edn. Prentice-Hall, Inc. (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel E. Soto
    • 1
  • Jorge E. Pezoa
    • 1
  • Sergio N. Torres
    • 1
  1. 1.Departamento de Ingeniería Eléctrica and Center for Optics and Photonics (CEFOP)Universidad de ConcepciónConcepciónChile

Personalised recommendations