Advertisement

Identification of the Root Canal from Dental Micro-CT Records

  • László Szilágyi
  • Csaba Dobó-Nagy
  • Balázs Benyó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

This paper presents a novel semi-automated image processing procedure dedicated to the identification and characterization of the dental root canal, based on high-resolution micro-CT records. After the necessary image enhancement, parallel slices are individually segmented via histogram based quick fuzzy c-means clustering. The 3D model of root canal is built up from the segmented cross sections using the reconstruction of the inner surface, and the medial line is extracted by a 3D curve skeletonization algorithm. The central line of the root canal can finally be approximated as a 3D spline curve. The proposed procedure may support the planning of several kinds of endodontic interventions.

Keywords

image processing skeleton extraction micro computed tomography fuzzy c-means algorithm 

References

  1. 1.
    Analoui, M., Krisnamurthy, S., Brown, C.: Modeling and measurement of root canal using stereo digital radiography. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 3976, pp. 306–314 (2000)Google Scholar
  2. 2.
    Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 21, 945–955 (2005)CrossRefGoogle Scholar
  3. 3.
    Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comp. Graph. 13, 530–548 (2007)CrossRefGoogle Scholar
  4. 4.
    Endo, M., Kobashi, S., Kondo, K., Hata, Y.: Dentistry support ultrasonic system for root canal treatment aided by fuzzy logic. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1494–1499 (2005)Google Scholar
  5. 5.
    Germans, D.M., Spoelder, H.J.W., Renambot, L., Bal, H.E., van Daatselaar, S., van der Stelt, P.: Measuring in virtual reality: a case study in dentistry. IEEE Trans. Instrum. Meas. 57, 1177–1184 (2008)CrossRefGoogle Scholar
  6. 6.
    Hong, S.Y., Dong, J.: 3-D root canal modeling for advanced endodontic treatment. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE - The International Society for Optical Engineering, vol. 4702, pp. 321–330 (2002)Google Scholar
  7. 7.
    Lee, J.K., Ha, B.H., Choi, J.H., Perinpanayagam, H.: Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography. J. Endodontics 32, 941–945 (2006)CrossRefGoogle Scholar
  8. 8.
    van Soest, G., Shemesh, H., Wu, M.K., van der Sluis, L.W.M., Wesselink, P.R.: Optical coherence tomography for endodontic imaging. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6843, vol. 6843, art. no. 68430F, pp. 1–8 (2008)Google Scholar
  9. 9.
    Swain, M.V., Xue, J.: State of the art of micro-CT applications in dental research. Int. J. Oral. Sci. 1, 177–188 (2009)CrossRefGoogle Scholar
  10. 10.
    Szilágyi, L., Benyó, Z., Szilágyi, S.M., Adam, H.S.: MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: 25th Annual Int’l. Conference of IEEE Engineering in Medicine and Biology Society, pp. 724–726 (2003)Google Scholar
  11. 11.
    Willershausen, B., Kasaj, A., Röhrig, B., Marroquin, B.B.: Radiographic investigation of frequency and location of root canal curvatures in human mandibular anterior incisors in vitro. J. Endodontics 34, 152–156 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • László Szilágyi
    • 1
    • 2
  • Csaba Dobó-Nagy
    • 3
  • Balázs Benyó
    • 1
  1. 1.Department of Control Engineering and Information TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Faculty of Technical and Human ScienceSapientia - Hungarian Science University of TransylvaniaTîrgu-MureşRomania
  3. 3.Independent Section of RadiologySemmelweis UniversityBudapestHungary

Personalised recommendations