Advertisement

A New Asymmetric Criterion for Cluster Validation

  • Hosein Alizadeh
  • Behrouz Minaei-Bidgoli
  • Hamid Parvin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

In this paper a new criterion for clusters validation is proposed. Many stability measures to validate a cluster have been proposed such as Normalized Mutual Information. We propose a new criterion for clusters validation. The drawback of the common approach is discussed in this paper and then a new asymmetric criterion is proposed to assess the association between a cluster and a partition which is called Alizadeh-Parvin-Minaei criterion, APM. The APM criterion compensates the drawback of the common Normalized Mutual Information (NMI) measure. Then we employ this criterion to select the more robust clusters in the final ensemble. We also propose a new method named Extended Evidence Accumulation Clustering, EEAC, to construct the matrix of similarity from these selected clusters. Finally, we apply a hierarchical method over the obtained matrix to extract the final partition. The empirical studies show that the proposed method outperforms other ones.

Keywords

Clustering Ensemble Stability Measure Cluster Evaluation 

References

  1. 1.
    Alizadeh, H., Minaei-Bidgoli, B., Parvin, H., Mohsen, M.: An Asymmetric Criterion for Cluster Validation. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2011). LNCS. Springer, Heidelberg (in press, 2011) ISSN: 0302-9743Google Scholar
  2. 2.
    Ayad, H., Kamel, M.S.: Cumulative Voting Consensus Method for Partitions with a Variable Number of Clusters. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(1), 160–173 (2008)CrossRefGoogle Scholar
  3. 3.
    Brandsma, T., Buishand, T.A.: Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling. Hydrology and Earth System Sciences 2, 195–209 (1998)CrossRefGoogle Scholar
  4. 4.
    Das, A.K., Sil, J.: Cluster Validation using Splitting and Merging Technique. In: Int. Conf. on Computational Intelligence and Multimedia Applications, ICCIMA (2007) Google Scholar
  5. 5.
    Davison, A.C., Hinkley, D.V., Young, G.A.: Recent developments in bootstrap methodology. Statistical Science 18, 141–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Faceli, K., Marcilio, C.P., Souto, D.: Multi-objective Clustering Ensemble. In: Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS 2006) (2006) Google Scholar
  7. 7.
    Fern, X.Z., Lin, W.: Cluster Ensemble Selection. In: SIAM International Conference on Data Mining, SDM 2008 (2008)Google Scholar
  8. 8.
    Fred, A., Jain, A.K.: Data Clustering Using Evidence Accumulation. In: Proc. of the 16th Intl. Conf. on Pattern Recognition, ICPR 2002, Quebec City, pp. 276–280 (2002) Google Scholar
  9. 9.
    Fred, A., Jain, A.K.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)CrossRefGoogle Scholar
  10. 10.
    Fred, A., Jain, A.K.: Learning Pairwise Similarity for Data Clustering. In: Proc. of the 18th Int. Conf. on Pattern Recognition (ICPR 2006) (2006) Google Scholar
  11. 11.
    Fred, A., Lourenco, A.: Cluster Ensemble Methods: from Single Clusterings to Combined Solutions. Studies in Computational Intelligence (SCI), vol. 126, pp. 3–30 (2008)Google Scholar
  12. 12.
    Inokuchi, R., Nakamura, T., Miyamoto, S.: Kernelized Cluster Validity Measures and Application to Evaluation of Different Clustering Algorithms. In: IEEE Int. Conf. on Fuzzy Systems, Canada (July 16-21, 2006)Google Scholar
  13. 13.
    Lange, T., Braun, M.L., Roth, V., Buhmann, J.M.: Stability-based model selection. In: Advances in Neural Information Processing Systems, vol. 15. MIT Press (2003)Google Scholar
  14. 14.
    Law, M.H.C., Topchy, A.P., Jain, A.K.: Multiobjective data clustering. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 424–430 (2004)Google Scholar
  15. 15.
    Newman, C.B.D.J., Hettich, S., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLSummary.html
  16. 16.
    Möller, U., Radke, D.: Performance of data resampling methods based on clustering. Intelligent Data Analysis 10(2) (2006) Google Scholar
  17. 17.
    Roth, V., Lange, T., Braun, M., Buhmann, J.: A Resampling Approach to Cluster Validation. In: Intl. Conf. on Computational Statistics, COMPSTAT (2002)Google Scholar
  18. 18.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xie, X.L., Beni, G.: A Validity measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(4), 841–846 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hosein Alizadeh
    • 1
  • Behrouz Minaei-Bidgoli
    • 1
  • Hamid Parvin
    • 1
  1. 1.Mahdishahr BranchIslamic Azad UniversityMahdishahrIran

Personalised recommendations