A New Distributed Approach for Range Image Segmentation

  • Smaine Mazouzi
  • Zahia Guessoum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this paper we introduce a new distributed approach for image segmentation based on multi-agent systems. Several agents are placed randomly in the image, then each of them starts a region growing around its position. Several agents can be within the same homogeneous region. So, they must exchange information to better labeling pixels reached by these agents. Every labeled pixel is smoothed by replacing its parameters by those of the pixel in the center of the region seed. A set of real range images from the ABW image base was used to evaluate the proposed approach. Experimental results show the potential of the approach to provide an accurate and efficient image segmentation.


Image segmentation Multi-agent systems Region growing 


  1. 1.
    Bab Hadiashar, A., Gheissari, N.: Range image segmentation using surface selection criterion. IEEE Transactions on Image Processing 15(7), 2006–2018 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ballet, P., Rodin, V., Tisseau, J.: Edge detection using a multiagent system. In: 10th Scandinavian Conference on Image Analysis, Lapeenranta, Finland, pp. 621–626 (1997)Google Scholar
  3. 3.
    Ding, Y., Ping, X., Hu, M., Wang, D.: Range image segmentation based on randomized hough transform. Pattern Recognition Letters 26(13), 2033–2041 (2005)CrossRefGoogle Scholar
  4. 4.
    Fan, T.J., Medioni, G.G., Nevatia, R.: Segmented description of 3-D surfaces. IEEE Journal of Robotics and Automation 3(6), 527–538 (1987)CrossRefGoogle Scholar
  5. 5.
    Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K.W., Eggert, D.W., Fitzgibbon, A.W., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 673–689 (1996)CrossRefGoogle Scholar
  6. 6.
    Jiang, X., Bunke, H.: Edge detection in range images based on Scan Line approximation. Computer Vision and Image Understanding 73(2), 183–199 (1999)CrossRefGoogle Scholar
  7. 7.
    Jones, J., Saeed, M.: Image enhancement, an emergent pattern formation approach via decentralised multi-agent systems. Multiagent and Grid Systems Journal (ISO Press) Special Issue on Nature inspired systems for parallel, asynchronous and decentralised environments 3(1), 105–140 (2007)zbMATHGoogle Scholar
  8. 8.
    Li, S., Zhao, D.: Gradient-based polyhedral segmentation for range images. Pattern Recognition Letters 24(12), 2069–2077 (2003)CrossRefGoogle Scholar
  9. 9.
    Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(6), 544–551 (1999)CrossRefGoogle Scholar
  10. 10.
    Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artificial Intelligence in Medicine 30(2), 153–176 (2004)CrossRefGoogle Scholar
  11. 11.
    Rodin, V., Benzinou, A., Guillaud, A., Ballet, P., Harrouet, F., Tisseau, J., Le Bihan, J.: An immune oriented multi-agent system for biological image processing. Pattern Recognition 37(4), 631–645 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Smaine Mazouzi
    • 1
  • Zahia Guessoum
    • 2
  1. 1.Dép. d’informatiqueUniversité de SkikdaAlgeria
  2. 2.LIP6Université de Paris 6ParisFrance

Personalised recommendations