On the Importance of Multi-dimensional Information in Gender Estimation from Face Images

  • Juan Bekios-Calfa
  • José M. Buenaposada
  • Luis Baumela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


Estimating human face demography from images is a problem that has recently been extensively studied because of its relevant applications. We review state-of-the-art approaches to gender classification and confirm that their performance drops significantly when classifying young or elderly faces. We hypothesize that this is caused by the existence of dependencies among the demographic variables that were not considered in traditional gender classifiers. In the paper we confirm experimentally the existence of such dependencies between age and gender variables. We also prove that the performance of gender classifiers can be improved by considering the dependencies with age in a multi-dimensional approach. The performance improvement is most prominent for young and elderly faces.


Face Image Face Detection Gender Recognition FERET Database Group Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Carvalho, A., Freitas, A.A.: A tutorial on multi-label classification techniques. Foundations of Computational Intelligence. Function Approximation and Classification, vol. 5. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Gallagher, A.C., Chen, T.: Estimating age, gender and identity using first name priors. In: Proc. of CVPR (2008)Google Scholar
  3. 3.
    Baluja, S., Rowley, H.A.: Boosting sex identification performance. International Journal of Computer Vision 71(1) (January 2007)Google Scholar
  4. 4.
    Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 858–864 (2011)CrossRefGoogle Scholar
  5. 5.
    van der Gaag, L.C., de Waal, P.R.: Multi-dimensional bayesian network classifiers. In: European Conference on Probabilistic Graphical Models, pp. 107–114 (2006)Google Scholar
  6. 6.
    Gallagher, A.C., Chen, T.: Understanding images of groups of people. In: Proc. of CVPR, pp. 256–263 (2009)Google Scholar
  7. 7.
    Guo, G., Dyer, C.R., Fu, Y., Huang, T.S.: Is gender recognition affected by age? In: Proc. of IEEE International Workshop on Human-Computer Interaction (HCI 2009), pp. 2032–2039 (2009)Google Scholar
  8. 8.
    Guo, G., Mu, G.: A study of large-scale ethnicity estimation with gender and age variations. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2010), pp. 79–86 (2010)Google Scholar
  9. 9.
    Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and Simile Classifiers for Face Verification. In: Proc. of ICCV (October 2009)Google Scholar
  10. 10.
    Li, X., Maybank, S., Yan, S., Tao, D., Xu, D.: Gait components and their application to gender recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 145–155 (2008)CrossRefGoogle Scholar
  11. 11.
    Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  12. 12.
    Metze, F., Ajmera, J., Englert, R., Bub, U., Burkhardt, F., Stegmann, J., Muller, C., Huber, R., Andrassy, B., Bauer, J., Littel, B.: Comparison of four approaches to age and gender recognition for telephone applications. In: Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 4, pp. 1089–1092 (2007)Google Scholar
  13. 13.
    Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments and Computers 36, 630–633 (2004)CrossRefGoogle Scholar
  14. 14.
    Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)CrossRefGoogle Scholar
  15. 15.
    Phillips, P., Moon, H., Rauss, P., Rizvi, S.: The feret evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  16. 16.
    Sivic, J., Zitnick, C.L., Szeliski, R.: Finding people in repeated shots of the same scene. In: Proc. BMVC (2006)Google Scholar
  17. 17.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Transactions on Konwledge and Data Engineering (2010)Google Scholar
  18. 18.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  19. 19.
    Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juan Bekios-Calfa
    • 1
  • José M. Buenaposada
    • 2
  • Luis Baumela
    • 3
  1. 1.Dept. de Ingeniería de Sistemas y ComputaciónUniversidad Católica del NorteAntofagastaChile
  2. 2.Dept. de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.Dept. de Inteligencia ArtificialUniversidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations