Fast Finsler Active Contours and Shape Prior Descriptor

  • Foued Derraz
  • Abdelmalik Taleb-Ahmed
  • Laurent Peyrodie
  • Gerard Forzy
  • Christina Boydev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this paper we proposed a new segmentation method based Fast Finsler Active Contours (FFAC). The FFAC is formulated in the Total Variation (TV) framework incorporating both region and shape descriptors. In the Finsler metrics, the anisotropic boundary descriptor favorites strong edge locations and suitable directions aligned with dark to bright image gradients. Strong edges are not required everywhere along. We prove the existence of a solution to the new binary Finsler active contours model and we propose a fast and easy algorithm in characteristic function framework. Finally, we show results on some MR challenging images to illustrate accurate.


Finsler Active contours Wulff Shape characteristic function Shape prior Primal dual 


  1. 1.
    Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. IP 10(2), 266–277 (2001)zbMATHGoogle Scholar
  2. 2.
    Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. PAMI 28(1), 106–118 (2006)CrossRefGoogle Scholar
  3. 3.
    Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization: theory and examples, 2nd edn. Canadian Mathematical Society (2000)Google Scholar
  4. 4.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast Global Minimization of the Active Contour/Snake Model. JMIV 28(2) (2007)Google Scholar
  5. 5.
    Herbulot, A., Besson, S.J., Duffiner, S., Barlaud, M., Aubert, G.: Segmentation of vectorial image features using shape gradients and information measures. JMIV 25(3), 365–386 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Caselles, V., Chambolle, A.:  Anisotropic curvature-driven flow of convex sets. Nonlinear Analysis 65(8), 1547–1577 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Rousson, M., Paragios, N.: Prior Knowledge, Level Set Representations and Visual Grouping. IJCV 76(3), 231–243 (2008)CrossRefGoogle Scholar
  8. 8.
    Peng, D., Osher, S., Merriman, B., Zhao, H.: The Geometry of Wulff Crystal Shapes and Its Relations with Riemann Problems. In: Nonlinear PDE’ 1998, pp. 251–303 (1998)Google Scholar
  9. 9.
    Michailovich, O., Rathi, Y., Tannenbaum, A.: Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow. IEEE Trans. IP 16(11), 2787–2801 (2007)MathSciNetGoogle Scholar
  10. 10.
    Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. PAMI 30(3), 412–423 (2008)CrossRefGoogle Scholar
  11. 11.
    Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM JAM 65(5), 1817–1837 (2005)zbMATHGoogle Scholar
  12. 12.
    Chern, S., Shen, Z.: Riemann-Finsler Geometry. World Scientific (2005)Google Scholar
  13. 13.
    Foulonneau, A., Charbonnier, P., Heitz, F.: Affine-Invariant Geometric Shape Priors for Region-Based Active Contours. IEEE Trans. PAMI 28(8), 1352–1357 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, X., Burger, M., Osher, S.: A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration. J. Sci. Comput. 46(1), 20–46 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 494–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Foued Derraz
    • 1
    • 2
    • 4
  • Abdelmalik Taleb-Ahmed
    • 2
  • Laurent Peyrodie
    • 3
  • Gerard Forzy
    • 1
    • 4
  • Christina Boydev
    • 1
  1. 1.Faculté Libre de MédecineLilleFrance
  2. 2.LAMIH FRE CNRS 3036Université de ValenciennesValenciennesFrance
  3. 3.HEI - Hautes Etudes d’IngénieurLilleFrance
  4. 4.Groupe Hospitalier de l’Institut Catholique de LilleLilleFrance

Personalised recommendations