Advertisement

Local Response Context Applied to Pedestrian Detection

  • William Robson Schwartz
  • Larry S. Davis
  • Helio Pedrini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

Appearing as an important task in computer vision, pedestrian detection has been widely investigated in the recent years. To design a robust detector, we propose a feature descriptor called Local Response Context (LRC). This descriptor captures discriminative information regarding the surrounding of the person’s location by sampling the response map obtained by a generic sliding window detector. A partial least squares regression model using LRC descriptors is learned and employed as a second classification stage (after the execution of the generic detector to obtain the response map). Experiments based on the ETHZ pedestrian dataset show that the proposed approach improves significantly the results achieved by the generic detector alone and is comparable to the state-of-the-art methods.

Keywords

pedestrian detection local response context partial least squares regression 

References

  1. 1.
    Begard, J., Allezard, N., Sayd, P.: Real-time human detection in urban scenes: Local descriptors and classifiers selection with adaboost-like algorithms. In: CVPR Workshops (2008)Google Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)Google Scholar
  3. 3.
    Ess, A., Leibe, B., Gool, L.V.: Depth and Appearance for Mobile Scene Analysis. In: ICCV (2007)Google Scholar
  4. 4.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A Mobile Vision System for Robust Multi-Person Tracking. In: CVPR (2008)Google Scholar
  5. 5.
    Ess, A., Leibe, B., Schindler, K., Gool, L.V.: Moving Obstacle Detection in Highly Dynamic Scenes. In: ICRA (2009)Google Scholar
  6. 6.
    Gualdi, G., Prati, A., Cucchiara, R.: Contextual Information and Covariance Descriptors for People Surveillance: An Application for Safety of Construction Workers. EURASIP Journal on Image and Video Processing (2011)Google Scholar
  7. 7.
    Lin, Z., Davis, L.S.: A pose-invariant descriptor for human detection and segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 423–436. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: CVPR (2008)Google Scholar
  9. 9.
    Morency, L.P.: Co-occurrence graphs: contextual representation for head gesture recognition during multi-party interactions. In: WUCVP (2009)Google Scholar
  10. 10.
    Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: CVPR (2008)Google Scholar
  11. 11.
    Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human Detection Using Partial Least Squares Analysis. In: ICCV (2009)Google Scholar
  12. 12.
    Schwartz, W., Guo, H., Davis, L.: A Robust and Scalable Approach to Face Identification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 476–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Shet, V., Neuman, J., Ramesh, V., Davis, L.: Bilattice-based logical reasoning for human detection. In: CVPR (2007)Google Scholar
  14. 14.
    Tran, D., Forsyth, D.: Configuration estimates improve pedestrian finding. In: NIPS (2007)Google Scholar
  15. 15.
    Tuzel, O., Porikli, F., Meer, P.: Human Detection via Classification on Riemannian Manifolds. In: CVPR (2007)Google Scholar
  16. 16.
    Wold, H.: Partial least squares. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, vol. 6, pp. 581–591. Wiley, New York (1985)Google Scholar
  17. 17.
    Wu, B., Nevatia, R.: Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection. In: CVPR (2008)Google Scholar
  18. 18.
    Wu, C., Aghajan, H.: Using context with statistical relational models: object recognition from observing user activity in home environment. In: WUCVP (2009)Google Scholar
  19. 19.
    Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using multiple resolutions. In: ICCV (2007)Google Scholar
  20. 20.
    Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • William Robson Schwartz
    • 1
  • Larry S. Davis
    • 2
  • Helio Pedrini
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil
  2. 2.Dept. of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations