Improving Tracking Algorithms Using Saliency

  • Cristobal Undurraga
  • Domingo Mery
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


One of the challenges of computer vision is to improve the automatic systems for the recognition and tracking of objects in a set of images. One approach that has recently gained importance is based on extracting descriptors, such as the covariance descriptor, because they manage to remain invariant in the regions of these images despite changes of translation, rotation and scale. In this work we propose, using the Covariance Descriptor, a novel saliency system able to find the most relevant regions in an image, which can be used for recognition and tracking objects. Our method is based on the amount of information from each point in the image, and allows us to adapt the regions to maximize the difference of information between the region and its environment. The results show that this tool’s improvements can boost trackers precision up to 90% (with initial precision of 50%) without compromising the recall.


Saliency Edge Detector Tracking Object Recognition Covariance Descriptor 


  1. 1.
    Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Batista, J.: A region covariance embedded in a particle filter for multi-objects tracking. Update (2008)Google Scholar
  3. 3.
    Cortez, P., Mery, D., Sucar, L.: Object Tracking Based on Covariance Descriptors and On-Line Naive Bayes Nearest Neighbor Classifier. In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology, pp. 139–144. IEEE (2010)Google Scholar
  4. 4.
    Cortez, P., Undurraga, C., Mery, D., Soto, A.: Performance evaluation of the Covariance descriptor for target detection. In: 2009 International Conference of the Chilean Computer Science Society, pp. 133–141. IEEE (2009)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  6. 6.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. Colorectal disease: The Official Journal of the Association of Coloproctology of Great Britain and Ireland 4(2), 147–149 (2002)CrossRefGoogle Scholar
  7. 7.
    Jugessur, D., Dudek, G.: Local appearance for robust object recognition. CVPR (2000)Google Scholar
  8. 8.
    Kalal, Z., Matas, J., Mikolajczyk, K.: Online learning of robust object detectors during unstable tracking. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1417–1424 (September 2009)Google Scholar
  9. 9.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  10. 10.
    Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1713–1727 (2008)CrossRefGoogle Scholar
  13. 13.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2002)Google Scholar
  14. 14.
    Yao, J., Odobez, J.m., Parc, C.: Fast Human Detection from Videos Using Covariance Features. Learning (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cristobal Undurraga
    • 1
  • Domingo Mery
    • 1
  1. 1.Computer Science DepartmentPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations