Efficient 3D Curve Skeleton Extraction from Large Objects

  • László Szilágyi
  • Sándor Miklós Szilágyi
  • David Iclănzan
  • Lehel Szabó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


Curve skeletons are used for linear representation of 3D objects in a wide variety of engineering and medical applications. The outstandingly robust and flexible curve skeleton extraction algorithm, based on generalized potential fields, suffers from seriously heavy computational burden. In this paper we propose and evaluate a hierarchical formulation of the algorithm, which reduces the space where the skeleton is searched, by excluding areas that are unlikely to contain relevant skeleton branches. The algorithm was evaluated using dozens of object volumes. Tests revealed that the computational load of the skeleton extraction can be reduced up to 100 times, while the accuracy doesn’t suffer relevant damage.


3D curve skeleton potential fields hierarchical algorithm parallel computation graphical processing units 


  1. 1.
    Ahuja, N., Chuang, J.: Shape representation using a generalized potential field model. IEEE Trans. Patt. Anal. Mach. Intell. 19, 169–176 (1997)CrossRefGoogle Scholar
  2. 2.
    Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), article 44, 1–10 (2008)CrossRefGoogle Scholar
  3. 3.
    Bertrand, G., Malandain, G.: A new charactrization of three-dimensional simple points. Patt. Recogn. Lett. 15, 169–175 (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bitter, I., Kaufman, A.E., Sato, M.: Penalized-distance volumetric skeleton algorithm. IEEE Trans. Vis. Comp. Graph. 7, 195–206 (2001)CrossRefGoogle Scholar
  5. 5.
    Chuang, J., Tsai, C., Ko, M.C.: Skeletonization of three- dimensional objects using generalized potential field. IEEE Trans. Patt. Anal. Mach. Intell. 22, 1241–1251 (2000)CrossRefGoogle Scholar
  6. 6.
    Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 21, 945–955 (2005)CrossRefGoogle Scholar
  7. 7.
    Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comp. Graph. 13, 530–548 (2007)CrossRefGoogle Scholar
  8. 8.
    Grigorishin, T., Yang, Y.H.: Skeletonization: an electrostatic field-based approach. Patt. Anal. Appl. 1, 163–177 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    He, T., Hong, L., Chen, D., Liang, Z.: Reliable path for virtual endoscopy: ensuring complete examination of human organs. IEEE Trans. Vis. Comp. Graph. 7, 333–342 (2001)CrossRefGoogle Scholar
  10. 10.
    Ma, W.C., Wu, F.C., Ouhyoung, M.: Skeleton extraction of 3D objects with radial basis functions. In: Proc. IEEE Int’l Conf. Shape Modeling and Applications, pp. 1–10 (2003)Google Scholar
  11. 11.
    Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comp. Vis. Image Understand. 63, 418–429 (1996)CrossRefGoogle Scholar
  12. 12.
    Sanniti di Baja, G., Svensson, S.: A new shape descriptor for surfaces in 3D images. Patt. Recogn. Lett. 23, 703–711 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Vis. Comp. Graph. 14, 926–936 (2008)CrossRefGoogle Scholar
  14. 14.
    Wu, F.C., Ma, W.C., Liou, P., Liang, R.H., Ouhyoung, M.: Skeleton extraction of 3D objects with visible repulsive force. In: Proc. Eurographics Symp. Geometry Processing, pp. 1–7 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • László Szilágyi
    • 1
  • Sándor Miklós Szilágyi
    • 1
  • David Iclănzan
    • 1
  • Lehel Szabó
    • 1
  1. 1.Faculty of Technical and Human ScienceSapientia - Hungarian Science University of TransylvaniaTîrgu-MureşRomania

Personalised recommendations