A New Prior Shape Model for Level Set Segmentation

  • Poay Hoon Lim
  • Ulas Bagci
  • Li Bai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


Level set methods are effective for image segmentation problems. However, the methods suffer from limitations such as slow convergence and leaking problems. As such, over the past two decades, the original level set method has been evolved in many directions, including integration of prior shape models into the segmentation framework. In this paper, we introduce a new prior shape model for level set segmentation. With a shape model represented implicitly by a signed distance function, we incorporate a local shape parameter to the shape model. This parameter helps to regulate the model fitting process. Based on this local parameter of the shape model, we define a shape energy to drive the level set evolution for image segmentation. The shape energy is coupled with a Gaussian kernel, which acts as a weight distribution on the shape model. This Gaussian effect not only allows evolution of level set to deform around the shape model, but also provides a smoothing effect along the edges. Our approach presents a new dimension to extract local shape parameter directly from the shape model, which is different from previous work that focused on an indirect manner of feature extractions. Experimental results on synthetic, optical and MR images demonstrate the feasibility of this new shape model and shape energy.


image segmentation level set method prior shape model shape energy 


  1. 1.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactionson Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, T., Zhu, W.: Level set based shape prior segmentation. Technical Report 03-66, Computational Applied Mathematics, UCLA, Los Angeles, USA (2003)Google Scholar
  4. 4.
    Charpiat, G., Faugreas, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Journal of Foundations of Computational Mathematics 5(1), 1–58 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cremers, D., Kohlberger, T., Schnorr, C.: Shape Statistics in Kernel Space for Variational Image Segmentation. Pattern Recognition 36(9), 1929–1943 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cremers, D., Osher, S.J., Soatto, S.: Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation. International Journal of Computer Vision 69(3), 335–351 (2006)CrossRefGoogle Scholar
  7. 7.
    Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(8), 1262–1273 (2006)CrossRefGoogle Scholar
  8. 8.
    Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision 72(2), 195–215 (2007)CrossRefGoogle Scholar
  9. 9.
    Leventon, M., Grimson, E., Faugeras, O.: Level set based segmentation with intensity and curvature priors. IEEE Mathematical Methods in Biomedical Image Analysis, 4–11 (2000)Google Scholar
  10. 10.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Riklin-Raviv, T., Kiryati, N., Sochen, N.: Unlevel-sets: Geometry and prior-based segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part IV. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3d segmentation in MRI imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004, Part I. LNCS, vol. 3216, pp. 209–216. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Rousson, M., Paragios, N.: Prior Knowledge, Level Set Representations & Visual Grouping. Int. J. Comput. Vis. 76, 231–243 (2008)CrossRefGoogle Scholar
  15. 15.
    Sussman, M., Smereka, P., Osher, S.: A level Set Approach for Computing Solutions to Incompresible Two-Phase Flow. Journal of Computational Physics 114, 146–159 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W., Willsky, A.: A Shape-Based Approach to The Segmentation of Medical Imagery Using Level Sets. IEEE Trans. on Medical Imaging 22(2), 137–154 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Poay Hoon Lim
    • 1
  • Ulas Bagci
    • 2
  • Li Bai
    • 1
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK
  2. 2.Radiology and Imaging Science DepartmentNIHUSA

Personalised recommendations