An Adaptive Color Similarity Function for Color Image Segmentation

  • Rodolfo Alvarado-Cervantes
  • Edgardo M. Felipe-Riveron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this paper an interactive, semiautomatic image segmentation method is presented which, processes the color information of each pixel as a unit, thus avoiding color information scattering. The process has only two steps: 1) The manual selection of few sample pixels of the color to be segmented in the image; and 2) The automatic generation of the so called Color Similarity Image (CSI), which is just a gray level image with all the tonalities of the selected colors. The color information of every pixel is integrated in the segmented image by an adaptive color similarity function designed for direct color comparisons. The color integrating technique is direct, simple, and computationally inexpensive and it has also good performance in gray level and low contrast images.


Color image segmentation Adaptive color similarity function HSI parameter distances 


  1. 1.
    Alvarado-Cervantes R.: Segmentación de patrones lineales topológicamente diferentes, mediante agrupamientos en el espacio de color HSI. M. Sc. Thesis, Center for Computing Research, National Polytechnic Institute, Mexico (2006)Google Scholar
  2. 2.
    Angulo, J., Serra, J.: Mathematical morphology in color spaces applied to the analysis of cartographic images. In: Proceedings of International Congress GEOPRO, México (2003)Google Scholar
  3. 3.
    Bourbakis, N., Yuan, P., Makrogiannis, S.: Object recognition using wavelets, L-G graphs and synthesis of regions. Pattern Recognition 40, 2077–2096 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recognition 41, 191–203 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: Advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, USA (2008)Google Scholar
  7. 7.
    Hanbury, A., Serra, J.A.: 3D-polar coordinate colour representation suitable for image analysis. Technical Report PRIP-TR-77, Austria (2002) Google Scholar
  8. 8.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications, 1st edn. Springer, Germany (2000)CrossRefGoogle Scholar
  9. 9.
    Shi, L., Funt, B.: Quaternion color texture segmentation. Computer Vision and Image Understanding 107, 88–96 (2007)CrossRefGoogle Scholar
  10. 10.
    Van den Broek, E.L., Schouten, T.E., Kisters, P.M.F.: Modelling human color categorization. Pattern Recognition Letters (2007)Google Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9, 62–66 (1979)CrossRefGoogle Scholar
  12. 12.
    Matlab v Image Processing Toolbox, Color-Based Segmentation Using K-Means Clustering (R2007a)Google Scholar
  13. 13.
    Alvarado-Cervantes, R., Felipe-Riveron, E.M., Sanchez-Fernandez, L.P.: Color Image Segmentation by Means of a Similarity Function. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 319–328. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rodolfo Alvarado-Cervantes
    • 1
  • Edgardo M. Felipe-Riveron
    • 1
  1. 1.Center for Computing ResearchNational Polytechnic InstituteVallejoMexico

Personalised recommendations