Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. The Review of Symbolic Logic (2009)
Google Scholar
Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)
CrossRef
Google Scholar
Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s Theorem in Coherent Logic. Journal of Automated Reasoning 40(1) (2008)
Google Scholar
Borsuk, K., Szmielew, W.: Foundations of Geometry. Norht-Holland Publishing Company, Amsterdam (1960)
MATH
Google Scholar
Buchberger, B.: An Algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. PhD thesis. University of Innsbruck (1965)
Google Scholar
Buchberger, B., et al.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic (2006)
Google Scholar
Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht (1988)
MATH
Google Scholar
Chou, S.-C., Gao, X.-S.: Automated reasoning in geometry. In: Handbook of Automated Reasoning. Elsevier (2001)
Google Scholar
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. World Scientific, Singapore (1994)
CrossRef
MATH
Google Scholar
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated production of traditional proofs for constructive geometry theorems. In: IEEE Symposium on Logic in Computer Science LICS. IEEE Computer Society Press (1993)
Google Scholar
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated generation of readable proofs with geometric invariants, II. theorem proving with full-angles. Journal of Automated Reasoning 17 (1996)
Google Scholar
Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal Automated Reasoning 25(3) (2000)
Google Scholar
Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in hilbert’s elementary geometry. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 306–323. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Duprat, J.: Une axiomatique de la géométrie plane en coq. In: Actes des JFLA 2008, INRIA (2008)
Google Scholar
Fisher, J., Bezem, M.: Skolem Machines and Geometric Logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 201–215. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Gelernter, H., Hanson, J.R., Loveland, D.W.: Empirical explorations of the geometry-theorem proving machine. In: Computers and Thought. MIT Press (1995)
Google Scholar
Guilhot, F.: Formalisation en coq d’un cours de géométrie pour le lycée. Journées Francophones des Langages Applicatifs (2004)
Google Scholar
Harrison, J.: Hol light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
CrossRef
Google Scholar
Heath, T.L.: The Thirteen Books of Euclid’s Elements. Dover Publications, New-York (1956)
MATH
Google Scholar
Hilbert, D.: Grundlagen der Geometrie, Leipzig (1899)
Google Scholar
Janičić, P., Kordić, S.: EUCLID — the geometry theorem prover. FILOMAT 9(3) (1995)
Google Scholar
Kahn, G.: Constructive geometry according to Jan von Plato. Coq contribution. Coq V5.10 (1995)
Google Scholar
Kapur, D.: Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation 2(4) (1986)
Google Scholar
Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane Geometry in Coq. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 141–162. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: ACM Symposium on Applied Computing. ACM (2009)
Google Scholar
Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer, Heidelberg (2003)
CrossRef
Google Scholar
Narboux, J.: Formalisation et automatisation du raisonnement géométrique en Coq. PhD thesis. Université Paris Sud (2006)
Google Scholar
Narboux, J.: Mechanical theorem proving in tarski’s geometry. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
MATH
Google Scholar
von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied Logic 76 (1995)
Google Scholar
von Plato, J.: Formalization of Hilbert’s geometry of incidence and parallelism. Synthese 110 (1997)
Google Scholar
Polonsky, A.: Proofs, Types, and Lambda Calculus. PhD thesis. University of Bergen (2011)
Google Scholar
Quaife, A.: Automated development of Tarski’s geometry. Journal of Automated Reasoning 5(1) (1989)
Google Scholar
Schwabhuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983)
CrossRef
MATH
Google Scholar
Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4) (2009)
Google Scholar
Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of ACM 22(2) (1975)
Google Scholar
Tarski, A.: What is elementary geometry? In: The Axiomatic Method, with Special Reference to Geometry and Physics. North-Holland (1959)
Google Scholar
The Coq development team. The Coq proof assistant reference manual, Version 8.2. TypiCal Project (2009)
Google Scholar
Trybulec, A.: Mizar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 20–23. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Wenzel, M.T.: Isar - a Generic Interpretative Approach to Readable Formal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)
CrossRef
Google Scholar
Wu, W.-T.: On the decision problem and the mechanization of theorem proving in elementary geometry. Scientia Sinica 21 (1978)
Google Scholar