Skip to main content

Oceanic Net Primary Production

  • Chapter
  • First Online:
Biophysical Applications of Satellite Remote Sensing

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Production of organic matter in the ocean is a fundamental process for biogeochemical cycling of elements (carbon, nitrogen, etc.) as well as for providing the foundation of nearly all marine food webs. Satellite remote sensing provides the only means of estimating this rate at basin and global scales. A variety of satellite-based models for estimation of net primary production exist spanning a wide range of complexity. Results from applying these models to the satellite record have yielded valuable insight on the ocean’s role in the earth climate system and the coupling of physics and biology. A vision for the next generation of NPP models aimed at utilizing existing tools and anticipated improvements in future satellite ocean color missions is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22(3). doi:10.1029/2007gb003154

  • Antoine D, Morel A (1996) Oceanic primary production, 1, Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob Biogeochem Cycles 10:43–55

    Google Scholar 

  • Antoine D, Morel A, Gordon HR, Banzon VF, Evans RH (2005) Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. J Geophys Res 110(C6). doi:10.1029/2004jc002620

  • Armstrong RA (2006) Optimality-based modeling of nitrogen allocation and photo acclimation in photosynthesis. Deep-Sea Res Part II-Topical Stud Oceanogr 53(5–7):513–531. doi:10.1016/j.dsr2.2006.01.020

    Article  Google Scholar 

  • Arndt DS, Baringer MO, Johnson MR (2010) State of the climate in 2009. Bull Am Meteorol Soc 91(7):s1-s222. doi:10.1175/BAMS-91-7-StateoftheClimate

    Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008a) Impact of a shrinking arctic ice cover on marine primary production. Geophys Res Lett 35(19):L19603

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL, Bushinsky S (2008b) Primary production in the southern ocean, 1997–2006. J Geophys Res 113(C8):C08004

    Google Scholar 

  • Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. J Geophys Res 110(C7):C07001

    Google Scholar 

  • Barber RT, Chavez FP (1983) Biological consequences of el-nino. Science 222(4629):1203–1210. doi:10.1126/science.222.4629.1203

    Article  Google Scholar 

  • Barber RT, Hilting AK (2002) History of the study of plankton productivity. In: Williams PJlB, Thomas DN, Reynolds CS (eds) Phytoplankton productivity. Blackwell Science Ltd, pp 16–43. doi:10.1002/9780470995204.ch2

  • Behrenfeld MJ (2010) Abandoning sverdrup critical depth hypothesis on phytoplankton blooms. Ecology 91(4):977–989. doi:10.1890/09-1207.1

    Article  Google Scholar 

  • Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19(1):1–14. doi:10.1029/2004GB002299

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997a) A consumer’’ guide to phytoplankton primary productivity models. Limnol Oceanogr 42(7):1479–1491

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997b) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20

    Article  Google Scholar 

  • Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc Lond B 363:2687–2703

    Google Scholar 

  • Behrenfeld MJ, Milligan AJ (2013) Photophysiological Expressions of Iron Stress in Phytoplankton. Annu Rev Mar Sci 5:217–246

    Article  Google Scholar 

  • Behrenfeld MJ, O’’alley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006a) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755

    Article  Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an enso transition. Science 291(5513):2594–2597

    Article  Google Scholar 

  • Behrenfeld MJ, Westberry TK, Boss ES, O’’alley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’’lmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794

    Article  Google Scholar 

  • Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM (2006b) Controls on tropical Pacific ocean productivity revealed through nutrient stress diagnostics. Nature 442(7106):1025–1028

    Article  Google Scholar 

  • Blunden J, Arndt DS, Baringer MO (2011) State of the climate in 2010. Bull Am Meteorol Soc 92(6):S1-S236. doi:10.1175/1520-0477-92.6.s1

  • Boss E, Behrenfeld M (2010) In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys Res Lett 37. doi:10.1029/2010gl044174

  • Bracher A, Vountas M, Dinter T, Burrows JP, Rottgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using phytodoas on sciamachy data. Biogeosciences 6(5):751–764

    Article  Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients for natural phytoplankton: Analysis and parameterization. J Geophys Res 100:13,321–13,332

    Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J Geophys Res 109. doi: 10.1029/2004JC002419

  • Bricaud A, Morel A, Babin M, Allalli K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J Geophys Res 103:31,033–31,044

    Google Scholar 

  • Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff’’ MR, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65(3):345–416

    Article  Google Scholar 

  • Campbell J, Antoine D, Armstrong R, Arrigo K, Balch W, Barber R, Behrenfeld M, Bidigare R, Bishop J, Carr ME, Esaias W, Falkowski P, Hoepffner N, Iverson R, Kiefer D, Lohrenz S, Marra J, Morel A, Ryan J, Vedernikov V, Waters K, Yentsch C, Yoder J (2002) Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Glob Biogeochem Cycles 16(3):1035

    Article  Google Scholar 

  • Carr ME, Friedrichs MAM, Schmeltz M, Aita MN, Antoine D, Arrigo KR, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis ET, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Quere C, Lohrenz S, Marra J, Melin F, Moore K, Morel A, Reddy TE, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res Part II-Topical Stud Oceanogr 53(5–7):741–770

    Article  Google Scholar 

  • Castro-Morales K, Kaiser J (2012) Using dissolved oxygen concentrations to determine mixed layer depths in the bellingshausen sea. Ocean Sci 8(1):1–10. doi:10.5194/os-8-1-2012

    Article  Google Scholar 

  • Chassot E, Bonhommeau S, Dulvy NK, Melin F, Watson R, Gascuel D, Le Pape O (2010) Global marine primary production constrains fisheries catches. Ecol Lett 13:495–505. doi:10.1111/j.1461-0248.2010.01443.x

    Article  Google Scholar 

  • Chavez FP, Messie M, Pennington JT (2011) Marine primary production in relation to climate variability and change. In: Carlson CA, Giovannoni SJ (eds) Annu Rev Mar Sci 3:227–260. doi:10.1146/annurev.marine.010908.163917

  • Chavez FP, Pennington JT, Castro CG, Ryan JP, Michisaki RP, Schlining B, Walz P, Buck KR, McFadyen A, Collins CA (2002) Biological and chemical consequences of the 1997–1998 el nino in central california waters. Prog Oceanogr 54(1–4):205–232. doi:10.1016/s0079-6611(02)00050-2

    Article  Google Scholar 

  • Churnside JH, Wilson JJ (2001) Airborne lidar for fisheries applications. Opt Eng 40(3):406–414. doi:10.1117/1.1348000

    Article  Google Scholar 

  • Ciotti AM, Lewis MR, Cullen JJ (2002) Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol Oceanogr 47(2):404–417

    Article  Google Scholar 

  • Clancy RM, Sadler WD (1992) The fleet numerical oceanography center suite of oceanographic models and products. Weather Forecast 7(2):307–327

    Article  Google Scholar 

  • Clarke GL, Ewing GC, Lorenzen CJ (1970) Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science 167(3921):1119–1121

    Article  Google Scholar 

  • D’’saro EA (2003) Performance of autonomous lagrangian floats. J Atmos Ocean Technol 20(6):896–911

    Article  Google Scholar 

  • Dave AC, Lozier MS (2010) Local stratification control of marine productivity in the subtropical north pacific. J Geophys Res 115. doi:10.1029/2010jc006507

  • Devred E, Sathyendranath S, Stuart V, Maass H, Ulloa O, Platt T (2006) A two-component model of phytoplankton absorption in the open ocean: Theory and applications. J Geophys Res 111(C3). doi:C03011 10.1029/2005jc002880

  • Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL (2005) Empirical and mechanistic models for the particle export ratio. Glob Biogeochem Cycles 19(4). doi:10.1029/2004gb002390

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70(4):1063–1085

    Google Scholar 

  • Esaias WE (1996) Algorithm theoretical basis document for modis product mod-27 ocean primary productivity. Goddard Space Flight Center

    Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92(22):10237–10241

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998a) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206

    Article  Google Scholar 

  • Falkowski PG, Behrenfeld MJ, Esaias WE, Balch WM, Campbell JW, Iverson RL, Kiefer DA, Morel A, Yoder JA (1998b) Satellite primary productivity data and algorithm development: A science plan for mission to planet earth. NASA Technical Memo 1998-104566, vol 42. NASA Goddard Space Flight Center, Greenbelt, Maryland

    Google Scholar 

  • Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27(1):8–14. doi:10.1111/j.0022-3646.1991.00008.x

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  Google Scholar 

  • Friedland KD, Stock C, Drinkwater KF, Link JS, Leaf RT, Shank BV, Rose JM, Pilskaln CH, Fogarty MJ (2012) Pathways between primary production and fisheries yields of large marine ecosystems. Plos One 7(1). doi:10.1371/journal.pone.0028945

  • Friedrichs MAM, Carr ME, Barber RT, Scardi M, Antoine D, Armstrong RA, Asanuma I, Behrenfeld MJ, Buitenhuis ET, Chai F, Christian JR, Ciotti AM, Doney SC, Dowell M, Dunne J, Gentili B, Gregg W, Hoepffner N, Ishizaka J, Kameda T, Lima I, Marra J, Melin F, Moore JK, Morel A, O’’alley RT, O’’eilly J, Saba VS, Schmeltz M, Smyth TJ, Tjiputra J, Waters K, Westberry TK, Winguth A (2009) Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J Mar Syst 76(1–2):113–133. doi:10.1016/j.jmarsys.2008.05.010

    Article  Google Scholar 

  • Friend AD, Geider RJ, Behrenfeld MJ, Still CJ (2009) Photosynthesis in global-scale models. In: Laisk A, Nedbal L, Govindjee G (eds) Advances in photosynthesis and respiration vol 29. Springer, The Netherlands, pp 465–497. doi:10.1007/978-1-4020-9237-4

  • Gordon HR, Clark DK, Mueller JL, Hovis WA (1980) Phytoplankton pigments from the nimbus-7 coastal zone color scanner: comparisons with surface measurements. Science 210(4465):63–66

    Article  Google Scholar 

  • Gruber N, Doney SC, Emerson SR, Gilbert D, Kobayashi T, Kortzinger A, Johnson GC, Johnson KJ, Riser SC, Ulloa O (2007) The argo-oxygen program. Argo Steering Committee

    Google Scholar 

  • Halsey KH, Milligan AJ, Behrenfeld MJ (2010) Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynth Res 103(2):125–137

    Article  Google Scholar 

  • Henson SA, Raitsos D, Dunne JP, McQuatters-Gollop A (2009) Decadal variability in biogeochemical models: Comparison with a 50-year ocean colour dataset. Geophys Res Lett 36. doi:10.1029/2009gl040874

  • Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112(6):3153–3159. doi:10.1016/j.rse.2008.03.011

    Article  Google Scholar 

  • Hovis WA, Clark DK, Anderson F, Austin RW, Wilson WH, Baker ET, Ball D, Gordon HR, Mueller JL, El-Sayed SZ, Sturm B, Wrigley RC, Yentsch CS (1980) Nimbus-7 coastal zone color scanner—system description and initial imagery. Science 210(4465):60–63

    Article  Google Scholar 

  • Howard KL, Yoder JA (1997) Contribution of the sub-tropical oceans to global primary production. In: Liu C-T (ed) Proceedings of cospar colloquium on space remote sensing of subtropical oceans. New York, pp 157–168

    Google Scholar 

  • Johnson KS, Riser SC, Karl DM (2010) Nitrate supply from deep to near-surface waters of the north pacific subtropical gyre. Nature 465(7301):1062–1065. doi:10.1038/nature09170

    Article  Google Scholar 

  • Kostadinov TS, Siegel DA, Maritorena S (2009) Retrieval of the particle size distribution from satellite ocean color observations. J Geophys Res 114. doi:10.1029/2009jc005303

  • Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: Assessment via the particle size distribution. Biogeosciences 7(10):3239–3257. doi:10.5194/bg-7-3239-2010

    Article  Google Scholar 

  • Laws EA, Bannister TT (1980) Nutrient-limited and light-limited growth of thalassiosira-fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25(3):457–473

    Article  Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Glob Biogeochem Cycles 14(4):1231–1246

    Article  Google Scholar 

  • Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41(27):5755–5772

    Google Scholar 

  • Lee ZP, Carder KL, Marra J, Steward RG, Perry MJ (1996) Estimating primary production at depth from remote sensing. Appl Optics 35(3):463–474

    Article  Google Scholar 

  • Loisel H, Duforet L, Dessailly D, Chami M, Dubuisson P (2008) Investigation of the variations in the water leaving polarized reflectance from the polder satellite data over two biogeochemical contrasted oceanic areas. Opt Express 16(17):12905–12918. doi:10.1364/oe.16.012905

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Article  Google Scholar 

  • Lozier MS, Dave AC, Palter JB, Gerber LM, Barber RT (2011) On the relationship between stratification and primary productivity in the north atlantic. Geophys Res Lett 38. doi:10.1029/2011gl049414

  • Luz B, Barkan E (2009) Net and gross oxygen production from o-2/ar, o-17/o-16 and o-18/o-16 ratios. Aquat Microb Ecol 56(2–3):133–145. doi:10.3354/ame01296

    Article  Google Scholar 

  • Marra J (2009) Net and gross productivity: weighing in with (14)c. Aquat Microb Ecol 56(2–3):123–131. doi:10.3354/ame01306

    Article  Google Scholar 

  • Martinez E, Antoine D, D’’rtenzio F, Gentili B (2009) Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326(5957):1253–1256. doi:10.1126/science.1177012

    Article  Google Scholar 

  • Milutinovic S, Bertino L (2011) Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity. Remote Sens Environ 115(8):1906–1917. doi:10.1016/j.rse.2011.03.013

    Article  Google Scholar 

  • Morel A (1991) Light and marine photosynthesis: a spectral model with geochemical and climatological implications 26:263–306

    Google Scholar 

  • Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21(24):6709–6720

    Google Scholar 

  • Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for psii as a diagnostic of nutrient stress. J Phycol 37(4):517–529

    Article  Google Scholar 

  • Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production - a process model-based on global satellite and surface data. Glob Biogeochem Cycles 7(4):811–841. doi:10.1029/93gb02725

    Article  Google Scholar 

  • Quay PD, Peacock C, Bjorkman K, Karl DM (2010) Measuring primary production rates in the ocean: Enigmatic results between incubation and non-incubation methods at station aloha. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003665

  • Roemmich D, Owens WB (2000) The Argo project: global ocean observations for understanding and prediction of climate variability. Oceanography 13(2):45–50

    Article  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in sea. Science 166(3901):72–000. doi:10.1126/science.166.3901.72

    Article  Google Scholar 

  • Ryther JH, Yentsch CS (1957) The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol Oceanogr 2:281–286

    Google Scholar 

  • Saba VS, Friedrichs MAM, Antoine D, Armstrong RA, Asanuma I, Behrenfeld MJ, Ciotti AM, Dowell M, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Marra J, Melin F, Morel A, O’’eilly J, Scardi M, Smith WO, Smyth TJ, Tang S, Uitz J, Waters K, Westberry TK (2011) An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8(2):489–503. doi:10.5194/bg-8-489-2011

    Article  Google Scholar 

  • Saba VS, Friedrichs MAM, Carr ME, Antoine D, Armstrong RA, Asanuma I, Aumont O, Bates NR, Behrenfeld MJ, Bennington V, Bopp L, Bruggeman J, Buitenhuis ET, Church MJ, Ciotti AM, Doney SC, Dowell M, Dunne J, Dutkiewicz S, Gregg W, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Karl DM, Lima I, Lomas MW, Marra J, McKinley GA, Melin F, Moore JK, Morel A, O’’eilly J, Salihoglu B, Scardi M, Smyth TJ, Tang SL, Tjiputra J, Uitz J, Vichi M, Waters K, Westberry TK, Yool A (2010) Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at bats and hot. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003655

  • Sathyendranath S, Longhurst A, Caverhill CM, Platt T (1995) Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res Part I-Oceanogr Res Papers 42(10):1773–1802. doi:10.1016/0967-0637(95)00059-f

    Article  Google Scholar 

  • Schrader PS, Milligan AJ, Behrenfeld MJ (2011) Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLoS ONE 6 (4). doi:e1875310.1371/journal.pone.0018753

  • Sherman K, Belkin IM, Friedland KD, O’’eilly J, Hyde K (2009) Accelerated warming and emergent trends in fisheries biomass yields of the world’’ large marine ecosystems. Ambio 38(4):215–224

    Article  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure—heterotrophic compartments of plankton and their relationship to plankton size fractions—comment. Limnol Oceanogr 23(6):1256–1263

    Article  Google Scholar 

  • Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D, Bailey SW, Bontempi PS, Boss E, Dierssen HM, Doney SC, Eplee RE, Evans RH, Feldman GC, Fields E, Franz BA, Kuring NA, Mengalt C, Nelson NB, Patt FS, Robinson WS, Sarmiento JS, Swan CM, Werdell PJ, Westberry TK, Wilding JG, Yoder JA (2013) Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens Environ 135:77–91

    Google Scholar 

  • Siegel DA, Westberry TK, O’’rien MC, Nelson NB, Michaels AF, Morrison JR, Scott A, Caporelli EA, Sorensen JC, Maritorena S, Garver SA, Brody EA, Ubante J, Hammer MA (2001) Bio-optical modeling of primary production on regional scales: The Bermuda biooptics project. Deep-Sea Res Part II-Topical Stud Oceanogr 48(8–9):1865–1896

    Article  Google Scholar 

  • Smyth TJ, Tilstone GH, Groom SB (2005) Integration of radiative transfer into satellite models of ocean primary production. J Geophys Res 110(C10). doi:10.1029/2004jc002784

  • Steemann Nielsen E (1952) The use of radio-active carbon (c14) for measuring organic production in the sea. J Cons Cons Int Explor Mer 18:117–140

    Google Scholar 

  • Talling JF (1957) The phytoplankton population as a compound photosynthetic system. New Phytol 56(2):133–149

    Article  Google Scholar 

  • Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’’ oceans: Seasonal and interannual variability from satellite observations. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003680

  • Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res 111(C8). doi:10.1029/2005jc003207

  • Uitz J, Huot Y, Bruyant F, Babin M, Claustre H (2008) Relating phytoplankton photophysiological properties to community structure on large scales. Limnol Oceanogr 53(2):614–630

    Article  Google Scholar 

  • Vollenweider RA (1966) Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. In: Goldman CR (ed) Primary productivity in aquatic environments. University of California Press, Berkeley. pp 455–472

    Google Scholar 

  • Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob Biogeochem Cycles 22(2):GB2024

    Google Scholar 

  • Westberry TK, Behrenfeld MJ, Milligan AJ, Doney SC (2013) Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization. Deep-Sea Res Part I 73:1–16

    Article  Google Scholar 

  • Westberry TK, Siegel DA (2006) Spatial and temporal distribution of Trichodesmium blooms in the world's oceans. Glob Biogeochem Cycles 20(4). doi:10.1029/2005gb002673

  • Westberry TK, Williams PJ. Le B, Behrenfeld MJ (2012) Global net community production and the putative net heterotrophy of the Oligotrophic Oceans. Global Biogeochem Cycles 26. doi:10.1029/2011GB004094

  • Zhao MS, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the modis terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176. doi:10.1016/j.rse.2004.12.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby K. Westberry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westberry, T.K., Behrenfeld, M.J. (2014). Oceanic Net Primary Production. In: Hanes, J. (eds) Biophysical Applications of Satellite Remote Sensing. Springer Remote Sensing/Photogrammetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25047-7_8

Download citation

Publish with us

Policies and ethics