Skip to main content

Remote Sensing of Forest Biomass

  • Chapter
  • First Online:
Biophysical Applications of Satellite Remote Sensing

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Forest biomass reflects sequestration or release of carbon between terrestrial ecosystems and the atmosphere. Measuring the size and complexity of forest biomass over large areas can enable us to better understand the environmental processes, availability of renewable energy, and global carbon cycle. This chapter reviews recent progress in measuring forest biomass from remote sensing. In quantifying forest biomass, forest properties are often characterized from three types of remote sensing data. Passive optical spectral reflectances are sensitive to vegetation structure (leaf area index, crown size and tree density), texture and shadow. Radar data measure dielectric and geometrical properties of forests. Lidar data characterize vegetation vertical structure and height. Because these instruments have their advantages and disadvantages in reflecting forest properties, data fusion techniques can combine data from multiple sensors and related information from associated databases to achieve improved accuracy in biomass estimation. The remote sensing data or derived forest attributes are commonly correlated to forest biomass using empirical regression models, non-parametric methods, and physically-based allometric models. Although forest biomass is widely estimated at various scales from remote sensing data, models tend to underestimate large biomass densities and overestimate small ones because of saturation issues. Finally, the assessment and validation of forest biomass obtained from remote sensing is critical because current biomass estimates at large area are of large uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboal JR, Areval JR, Fernandez A (2005) Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Island). Flora 200:264–274

    Google Scholar 

  • Anderson HE, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne Lidar and conventional field methods. Can J Remote Sens 32(5):355–366

    Google Scholar 

  • Asner GP, Knapp DE, Kennedy-Bowdoin T, Jones MO, Martin RE, Boardman J, Field CB (2007) Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (Lidar) for three-dimensional studies of ecosystems. J Appl Remote Sens 1. http://dx.doi.org/10.1117/1111.2794018

  • Asner GP, Knapp DE, Boardman J, Green RO, Kennedy-Bowdoin T, Eastwood M, Martin RE, Anderson C, Field CB (2012a) Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465

    Google Scholar 

  • Asner GP, Clark JK, Mascaro J, Galindo Garcia GA, Chadwick KD, Navarrete Encinals DA, Paez-Acosta G, Cabrera Montenegro E, Kennedy-Bowdoin T, Dugue A, Balaji A, von Hildebrand P, Maatoug L, Phillips Bernal JF, Yepes Quintero AP, Knapp D E, Garcia Davila MC, Jacobson J, Ordones MF (2012b) High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9:2683–2696

    Google Scholar 

  • Avitabile V, Herold M, Henry M, Schmullius C (2011) Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda. Carbon Balance Manag 6(7):1–14

    Google Scholar 

  • Baccini A, Friedl MA, Woodcock CE, Warbington R (2004) Forest biomass estimation over regional scales using multisource data. Geophys Res Lett 31(10):L10501

    Google Scholar 

  • Baccini A, Laporte N, Goetz SJ, Sun M, Dong H (2008) A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett 3:045011

    Google Scholar 

  • Bauer G, Schulze E-D, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Tree Physiol 17:777–786

    Google Scholar 

  • Bausch WC (1993) Soil background effects on reflectance-based crop coefficients for corn. Remote Sens Environ 46:213–222

    Google Scholar 

  • Ben-Ze’ev E, Karnieli A, Agam N, Kaufman Y, Holben B (2006) Assessing vegetation condition in the presence of biomass burning smoke by applying the aerosol-free vegetation index (AFRI) on MODIS. Int J Remote Sens 27:3203–3221

    Google Scholar 

  • Birth GS, Mcvey GR (1968) Measuring the colour of growing turf with a reflectance spectrophotometer. Agron J 60:640–643

    Google Scholar 

  • Blackard JA, Finco MV, Helmer EH, Holden GR, Hoppus ML, Jacobs DM, Lister AJ, Moisen GG, Nelson MD, Riemann R, Ruefenacht B, Salajanu D, Weyermann DL, Winterberger KC, Brandeis TJ, Czaplewski RL, McRoberts RE, Patterson PL, Tymcio RP (2008) Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112:1658–1677

    Google Scholar 

  • Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm Remote Sens 54:115–122

    Google Scholar 

  • Blair JB, Hofton MA, Rabine DL (2004) Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products, version 1.0. (http://lvis.gsfc.nasa.gov)

  • Boudreau J, Nelson RF, Margolis HA, Beaudoin A, Guindon L, Kimes DS (2008) Regional aboveground forest biomass using airborne and spaceborne lidar in Quebec. Remote Sens Environ 112:3876–3890

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134. FAO, Rome

    Google Scholar 

  • Brown S, Iverson LR (1992) Biomass estimates for tropical forests. World Resour Rev 4:366–384

    Google Scholar 

  • Brown S, Lugo AE (1992) Above ground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 17:8–18

    Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35:881–902

    Google Scholar 

  • Brown SL, Schroeder P, Kern JS (1999) Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag 123:81–90

    Google Scholar 

  • Calvao T, Palmeirim JM (2004) Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour. Int J Remote Sens 25:3113–3126

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388

    Google Scholar 

  • Chojnacky DC, Mickler RA, Meath LS, Woodall CW (2004) Estimates of down woody materials in eastern US forests. Environ Manag 33:S44–S55

    Google Scholar 

  • Chopping M (2010) CANAPI: canopy analysis with panchromatic imagery. Remote Sens Lett 2(1):21–29

    Google Scholar 

  • Chopping M, Moisen G, Su L, Laliberte A, Rango A, Martonchik JV et al (2008) Large area mapping of southwestern forest crowncover, canopy height, and biomass using MISR. Remote Sens Environ 112:2051–2063

    Google Scholar 

  • Chopping M, Nolin A, Moisen GG, Martonchik JV, Bull M (2009) Forest canopy height from the multiangle imaging spectroradiometer (MISR) assessed with high resolution discrete return lidar. Remote Sens Environ 113:2172–2185

    Google Scholar 

  • Chopping M, Schaaf CB, Zhao F, Wang Z, Nolin AW, Moisen GG, Martonchik JV, Bull M (2011) Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR. Remote Sens Environ 115:2943–2953. doi:10.1016/j.rse.2010.08.031

    Google Scholar 

  • Chopping M, North M, Chen J, Schaaf CB, Blair JB, Martonchik JV, Bull MA (2012) Forest Canopy cover and height from MISR in topographically complex Southwestern US landscapes assessed with high quality reference data. IEEE J Sel Topics Appl Earth Obs Remote Sens 5:44–58

    Google Scholar 

  • Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM + data. Remote Sens Environ 84:561–571

    Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B (2004) Digital change detection methods in ecosystem monitoring: A review. Int J Remote Sens 25(9):1565–1596

    Google Scholar 

  • Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens Environ 17:301–306

    Google Scholar 

  • Crist EP, Cicone RC (1984) A physically-based transformation of thematic Mapper data—the TM Tasseled Cap. IEEE Trans Geosci Remote Sens GE-22:256–263

    Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    Google Scholar 

  • Diemer C, Lucaschewski I, Spelsberg G, Tomppo E, Pekkarinen A (2000) Integration of terrestrial forest sample plot data, map information and satellite data. An operational multisource-inventory concept. In: Ranchin T, Wald L (eds) Proceedings of the third conference fusion of earth data: merging point measurements, raster maps and remotely sensed images, Sophia Antipolis, France, 26–28 Jan 2000, pp 143–150. SEE/URISCA, Nice

    Google Scholar 

  • Dobson MC (2000) Forest information from synthetic aperture Rader. J For 98(6):41–43

    Google Scholar 

  • Dobson M, Ulaby F, LeToan T, Beaudoin A, Kasischke E and Christensen N (1992) Dependence of radar backscatter on coniferous forest biomass. IEEE Trans Geosci Remote Sens 30(2):412–415

    Google Scholar 

  • Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens Environ 84:393–410

    Google Scholar 

  • Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79:305–319. Remote Sens Environ 112:3876–3890

    Google Scholar 

  • Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Bio-geogr 12(2):147–159

    Google Scholar 

  • Dubayah R, Drake JB (2000) Lidar remote sensing for forestry applications. J For 98:44–46

    Google Scholar 

  • Eklundh L, Hall K, Eriksson H, Ardö J, Pilesjö P (2003) Investigating the use of LANDSAT thematic mapper data for estimation of forest leaf area index in southern Sweden. Can J Remote Sens 29:349–362

    Google Scholar 

  • Fazakas Z, Nilsson M, Olsson H (1999) Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agric For Meteorol 98–99:417–425

    Google Scholar 

  • Finley AO, McRoberts RE (2008) Efficient k-nearest neighbor searches for multi-source forest attribute mapping. Remote Sens Environ 112:2203–2211

    Google Scholar 

  • Foody GM, Cutler ME, Mcmorrow J, Pelz D, Tangki H, Boyd DS, Douglas I (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob Ecol Biogeogr 10:379–387

    Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474

    Google Scholar 

  • Franco-Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand density, volume, and cover type using k-nearest neighbors method. Remote Sens Environ 77:251–274

    Google Scholar 

  • Franklin J, Hiernaux PYH (1991) Estimating foliage and woody biomass in Sahelian and Sudanian woodlands using a remote sensing model. Int J Remote Sens 12:1387–1404

    Google Scholar 

  • Fraser RH, Li Z (2002) Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sens Environ 82:95–110

    Google Scholar 

  • García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in Spain using height and intensity LiDAR data. Remote Sens Environ 114:816–830

    Google Scholar 

  • Gholz HL, Grier CC, Campbell AG, Brown AT (1979) Equations for estimating biomass and leaf area of plants in the Pacific Northwest, Res. Pap. 41, Oregon State University, For. Res. Lab., Corvallis, p 39

    Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2. Doi: 10.1088/1748-9326/2/4/045023

  • Gillespie AJR, Brown S, Lugo AE (1992) Tropical forest biomass estimation from truncated stand tables. For Ecol Manage 48:69–88

    Google Scholar 

  • Gjertsen A (2005) Accuracy of forest mapping based on Landsat TM data and a kNN method. In: Olsson H (ed) Proceedings of ForestSat 2005, BorÃ¥s, Sweden, 31 May–3 June 2005, pp 7–11. http://www.skogsstyrelsen.se

  • Goetz SJ, Baccini A, Laporte N, Johns T, Walker WS, Kellndorfer JM, Houghton RA, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag 4(2): doi: 10.1186/1750-0680-1184-1182

  • Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M (2010) Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ 114:1561–1575

    Google Scholar 

  • Gougeon FA, Leckie D (1999) Forest regeneration: individual tree crown detection techniques for density and stocking assessment. Proceedings of the international forum on automated interpretation of high spatial resolution digital imagery for forestry, Feb 10–12, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, B.C., pp 169–177

    Google Scholar 

  • Greenberg JA, Dobrowski SZ, Ustin SL (2005) Shadow allometry estimating tree structural parameters using hyperspatial image analysis. Remote Sens Environ 97:15–25

    Google Scholar 

  • Hall FG, Shimabukuro YE, Huemmrich KF (1995) Remote sensing of forest biophysical structure in boreal stands of Picea Mariana using mixture decomposition and geometric reflectance models. Ecol Appl 5(4):993–1013

    Google Scholar 

  • Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006) Modeling forest stand structure attributes using Landsat ETM + data: Application to mapping of aboveground biomass and stand volume. For Ecol Manag 225:378–390

    Google Scholar 

  • Halme M, Tomppo E (2001) Improving the accuracy of multisource forest inventory estimates by reducing plot location error—a multicriteria approach. Remote Sens Environ 78:321–327

    Google Scholar 

  • Harding DJ Carabajal CC (2005) ICESat waveform measurements of withinfootprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21S10, doi: 10.1029/2005GL023471

  • Häme T, Salli A, Andersson K, Lohi A (1997) A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data. Int J Remote Sens 18:3211–3243

    Google Scholar 

  • Harmon ME, Ferrell WK, Franklin JF (1990) Effects on carbon storage of conversion of old-growth forests to young forests. Science 247(4943):699–702

    Google Scholar 

  • Heiskanen J (2006a) Estimating aboveground tree biomass and leaf area index (LAI) in a mountain birch forest using ASTER satellite data. Int J Remote Sens 27:1135–1158

    Google Scholar 

  • Heiskanen J (2006b) Tree cover and height estimation in the Fennoscandian tundrataiga transition zone using multiangular MISR data. Remote Sens Environ 103:97–114

    Google Scholar 

  • Hoffer RM (1978) Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data. In: Swain PH, Davis SM (eds) Remote sensing: the quantitative approach, McGraw-Hill Book Company, New York, pp 227–289

    Google Scholar 

  • Horne JH (2003) A tasseled cap transformation for IKONOS images. ASPRS 2003 Annual Conference Proceedings, May 2003, Anchorage, Alaska

    Google Scholar 

  • Houghton RA, Butman D, Bunn AG, Krankina ON, Schlesinger P, Stone TA (2007) Mapping Russian forest biomass with data from satellites and forest inventories. Environ Res Lett 2: doi: 10.1088/1748-9326/2/4/045032

  • Huang C, Wylie B, Homer C, Yang L, Zylstra G (2002) Derivation of a Tasseled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23:1741–1748

    Google Scholar 

  • Hudak AT, Lefsky MA, Cohen, WB, Berterretche M (2002) Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens Environ 82:397–416

    Google Scholar 

  • Huete AR, Jackson RD, Post DF (1985) Spectral response of a plant canopy with different soil backgrounds. Remote Sens Environ 17:37–53

    Google Scholar 

  • Huete AR, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Google Scholar 

  • Hyde P, Dubayah R, Peterson B, Blair JB, Hofton M, Hunsaker C et al (2005) Mapping forest structure for wildlife habitat analysis using waveform LiDAR: validation of montane ecosystems. Remote Sens Environ 96:427–437

    Google Scholar 

  • Hyde P, Nelson R, Kimes D, Levine E (2007) Exploring LiDAR-RaDAR synergy predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR, and InSAR. Remote Sens Environ 106:28–38

    Google Scholar 

  • Imhoff M (1995) Radar backscatter and biomass saturation: ramifications for global biomass inventory. IEEE Trans Geosci Remote Sens 33(2):511–518

    Google Scholar 

  • Jakubauskas ME, Price KP (1997) Empirical relationships between biotic and spectral factors of Yellowstone lodgepole pine forests. Photogramm Eng Remote Sens 63(12):1375–1381

    Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. Encycl Plant Physiol No.12D:233–280

    Google Scholar 

  • Jasinski MF, Crago RD (1999) Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery. Agric For Meteorol 94:65–99

    Google Scholar 

  • Jenkins JC, Birdsey RA, Pan Y (2001) Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecol Appl 11:1174–1193

    Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35

    Google Scholar 

  • Katila M, Tomppo E (2001) Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sens Environ 76:16–32

    Google Scholar 

  • Kaufman YJ, Tanré D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270

    Google Scholar 

  • Kellndorfer J, Walker W, Pierce L, Dobson C, Fites JA, Hunsaker C, Vona J, Clutter M (2004) Vegetation height estimation from shuttle radar topography mission and national elevation datasets. J Remote Sens 93(5):339−358

    Google Scholar 

  • Kellndorfer J, Walker W, LaPoint E, Kirsch K (2010) Statistical fusion of LiDAR, InSAR, and optical remote sensing data for forest stand height characterization: a regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. Geophys Res Lett 115:G00E08

    Google Scholar 

  • Kellndorfer J, Walker W, LaPoint E, Cormier T, Bishop J, Fiske G, Kirsch K (2013) Vegetation height, biomass, and carbon stock for the conterminous United States: a high-resolution dataset from Landsat ETM+, SRTM-InSAR, National Land Cover Database, and Forest Inventory and Analysis data fusion (in review)

    Google Scholar 

  • Kennedy RE, Cohen WB, Schroeder TA (2007) Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens Environ 110:370–386

    Google Scholar 

  • Kimes DS, Ranson KJ, Sun G, Blair JB (2006) Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sens Environ 100:503–511

    Google Scholar 

  • Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J Geophys Res 103:32257–32274

    Google Scholar 

  • Koukal T, Suppan F, Schneider W (2005) The impact of radiometric calibration on kNN predictions of forest attributes. In: Olsson H (ed) Proceedings of ForestSat 2005. BorÃ¥s, Sweden, 31May–3 June 2005, pp 17–21. http://www.skogsstyrelsen.se

  • Kraenzel M, Castillo A, Moore T, Potvin C (2003) Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. For Ecol Manage 173:213–225

    Google Scholar 

  • Krankina ON, Harmon ME, Cohen WB, Oetter DR, Zyrina O, Duane MV (2004) Carbon stores, sinks, and sources in forests of Northwestern Russia: can we reconcile forest inventories with remote sensing results? Clim Chang 67:257–272

    Google Scholar 

  • Labrecque S, Fournier RA, Luther JE, Piercey D (2006) A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For Ecol Manag 226:129–144

    Google Scholar 

  • Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manag 180:317–333

    Google Scholar 

  • Larsson H (1993) Linear regression for canopy cover estimation in Acacia woodlands using Landsat-TM, -MSS, and SPOT HRV XS data. Int J Remote Sens 14:2129–2136

    Google Scholar 

  • Laurent VCE, Verhoef W, Clevers JGPW, Schaepman M E (2011) Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models. Remote Sens Environ 115:1043–1052

    Google Scholar 

  • Le Toan T, Beaudoin A, Riom J, Guyon D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens 30:403–411

    Google Scholar 

  • Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115:2850–2860

    Google Scholar 

  • Leboeuf A, Beaudoin A, Fournier RA, Guindon L, Luther JE, Lambert M-C (2007) A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sens Environ 110:488–500

    Google Scholar 

  • Lefsky MA, Harding D, Cohen W, Parker G, Shugart H (1999a) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67:83–96

    Google Scholar 

  • Lefsky MA, Harding D, Cohen WB, Parker G, Shugart HH (1999b) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67:83–98

    Google Scholar 

  • Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999c) Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens Environ 70:339–361

    Google Scholar 

  • Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J For Res 31:78–87

    Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Bio-geogr 11(5):393–399

    Google Scholar 

  • Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548

    Google Scholar 

  • Lefsky MA, Keller M, Pang Y, de Camargo P, Hunter MO (2007) Revised method for forest canopy height estimation from the geoscience laser altimeter system waveforms. J Appl Remote Sens 1:013537. doi:10.1117/1.2795724

    Google Scholar 

  • Li X, Strahler AH (1985) Geometric-optical modeling of a coniferous forest canopy. IEEE Trans Geosci Remote Sens GE-23:207–221

    Google Scholar 

  • Li X, Strahler AH (1986) Geometric-optical bidirectional reflectance modeling of a coniferous forest canopy. IEEE Trans Geosci Remote Sens GE-24:281–293

    Google Scholar 

  • Lim KS, Treitz PM (2004) Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand J For Res 19:558–570

    Google Scholar 

  • Lim K, Treitz P, Wulder MA, St-Onge B, Flood M (2003) Lidar remote sensing of forest structure. Prog Phys Geogr 27:88–106

    Google Scholar 

  • Losi CJ, Siccama TG, Condit R, Morales JE (2003) Analysis of alternative methods for estimating carbon stock in young tropical plantations. For Ecol Manage 184(1–3):355–368

    Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon Basin. Int J Remote Sens 26:2509–2525

    Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328

    Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Relationships between forest stand parameters and landsat thematic mapper spectral responses in the Brazilian Amazon Basin. For Ecol Manag 198:149–167

    Google Scholar 

  • Madugundu R, Nizalapur V, Jha CS (2008) Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. Int J Appl Earth Obs Geoinf 10(2):211–219

    Google Scholar 

  • Maselli F, Chirici G, Bottai L, Corona P, Marchetti M (2005) Estimation of Mediterranean forest attributes by the application of k-NN procedures to multitemporal Landsat ETM+ images. Int J Remote Sens 26(17):3781–3796

    Google Scholar 

  • McRoberts RE (2006) A model-based approach to estimating forest area. Remote Sens Environ 103:56–66

    Google Scholar 

  • McRoberts RE, Nelson MD, Wendt DG (2002) Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens Environ 82:457–468

    Google Scholar 

  • McRoberts RE, Tomppo EO, Finley AO, Heikkinen J (2007) Estimating areal means and variances of forest attributes using the k-nearest neighbors technique and satellite imagery. Remote Sens Environ 111(4):466–480

    Google Scholar 

  • Miura T, Huete AR, van Leeuwen WJD (1998) Vegetation detection through smoke-filled AVHRIS images: An assessment using MODIS band passes. J Geophys Res 103(D24):32,001–32,011

    Google Scholar 

  • Moeur M, Stage A (1995) Most similar neighbor: an improved sample inference procedure for natural resource planning. For Sci 41(2):337–359

    Google Scholar 

  • Muukkonen P, Heiskanen J (2005) Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sens Environ 99:434–447

    Google Scholar 

  • Myneni RB, Nemani RR, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–1393

    Google Scholar 

  • Myneni RB et al (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231

    Google Scholar 

  • Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090

    Google Scholar 

  • Næsset E, Gobakken T, Holmgren J, Hyyppa H, Hyyppa J, Maltamo M et al (2004) Laser scanning of forest resources: the Nordic experience. Scand J For Res 19:482–499

    Google Scholar 

  • Nelson R (2010) Model effects on GLAS-based regional estimates of forest biomass and carbon. Int J Remote Sens 31:1359–1372

    Google Scholar 

  • Nelson R, Swill R, Krabill W (1988) Using airborne lasers to estimate forest canopy and stand characteristics. J For 86:31–38

    Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couta LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the Central Amazon. For Ecol Manag 117:149–167

    Google Scholar 

  • Nelson R, Parker G, Hom M (2003) A portable airborne laser system for forest inventory. Photogramm Eng Remote Sens 69(3):267–273

    Google Scholar 

  • Nelson R, Short A, Valenti M (2004) Measuring biomass and carbon in Delaware using and airborne profiling lidar. Scand J For Res 19:500–511

    Google Scholar 

  • Nelson RF, Hyde P, Johnson P, Emessiene B, Imhoff ML, Campbell R, Edwards W (2007) Investigating RaDAR-LiDAR synergy in a North Carolina pine forest. Remote Sens Environ 110:98–108

    Google Scholar 

  • Nelson R, Ranson KJ, Sun G, Kimes DS, Kharuk V, Montesano P (2009) Estimating Siberian Timber volume Using MODIS and ICESat/GLAS. Remote Sens Environ 113:691–701

    Google Scholar 

  • Nemani RR, Pierce LL, Band LE, Running SW (1993) Forest ecosystem processes at the watershed scale: Sensitivity to remotely sensed leaf area index estimates. Int J Remote Sens 14:2519–2534

    Google Scholar 

  • Ni-Meister W, Lee S, Strahler AH, Woodcock CE, Schaaf C, Yao T et al (2010) Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J Geophys Res 115:1–12

    Google Scholar 

  • Nolin A W (2004) Towards retrieval of forest cover density over snow from the Multiangle Imaging SpectroRadiometer (MISR). Hydrol Process 18:3623–3636

    Google Scholar 

  • Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, USA. Can J For Res 32:725–741

    Google Scholar 

  • Palace M, Keller M, Asner GP, Hagen S, Braswell B (2008) Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties. Biotropica 40(2):141–150, doi: 10.1111/j.1744-7429.2007.00353.x

    Google Scholar 

  • Paster J, Aber J, Melillo JM (1984) Biomass prediction using generalized allometric regressions for some Northeast tree species. For Ecol Manag 7:265–274

    Google Scholar 

  • Peddle DR, Johnson RL (2000) Spectral mixture analysis of airborne remote sensing imagery for improved prediction of leaf area index in mountainous terrain, Kananaskis, Alberta. Can J Remote Sens 26:176–187

    Google Scholar 

  • Phat NK, Knorr W, Kim S (2004) Appropriate measures for conservation of terrestrial carbon stocks—Analysis of trends of forest management in Southeast Asia. For Ecol Manage 191:283–299

    Google Scholar 

  • Phua M, Saito H (2003) Estimation of biomass of a mountainous tropical forest using Landsat TM data. Can J Remote Sens 29:429–440

    Google Scholar 

  • Peddle DR, Brunke SP, Hal, FG (2001) A comparison of spectral mixture analysis and ten vegetation indices for estimating boreal forest biophysical information from airborne data. Can Remote Sens 27(6):627–635

    Google Scholar 

  • Pierce KB, Ohmann JL, Wimberly MC, Gregory MJ, Fried JS (2009) Mapping wildland fuels and forest structure for land management: a comparison of nearest neighbor imputation and other methods. Can J For Res 39:1901–1916

    Google Scholar 

  • Popescu SC (2007) Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy 31(9):646–655

    Google Scholar 

  • Popescu SC, Zhao K (2008) A voxel-based lidar method for assessing crown base height. Remote Sens Environ 112(3):767–781

    Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29(5):564–577

    Google Scholar 

  • Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For Sci 50:551–565

    Google Scholar 

  • Powell SL, Warren B, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114:1053–1068

    Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH (1994) Modified Soil adjusted vegetation index (MSAVI). Remote Sens Environ 48:119–126

    Google Scholar 

  • Rahman MM, Csaplovics E, Koch B (2005) An efficient regression strategy for extracting forest biomass information from satellite sensor data. Int J Remote Sens 26:1511–1519

    Google Scholar 

  • Rahman MH, Okubo A, Kawai S, Sugiyama S (2008) Assessing microbial community in andisol differing in management practices by biochemical and molecular fingerprinting methods. Int J Soil Sci 3:1–10

    Google Scholar 

  • Ranson KJ, Sun G (1994) Northern forest classification using temporal multifrequency and multipolarimetric SAR images. Remote Sens Environ 47(2):142–153

    Google Scholar 

  • Ranson KJ, Sun G (2000) Effects of environmental conditions on boreal forest classification and biomass estimates with SAR. IEEE Trans Geosci Remote Sens 38(3):1242–1252.

    Google Scholar 

  • Reese H, Nilsson M, Granqvist Pahlén T, Hagner O, Joyce S, Tingelöf U, Egberth M, Olsson H (2003) Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. Ambio 32:542–548

    Google Scholar 

  • Ripple WJ (1986) Spectral reflectance relationship to leaf water stress. Photogramm Eng Remote Sens 52:1669–1675

    Google Scholar 

  • Rock BN, Vogelmann JE, Williams DL, Vogelmann AF, Hoshizaki T (1986) Remote detection of forest damage. Bioscience 36:439–445

    Google Scholar 

  • Rouse J, Haas R, Schell J, Deering D, Harlan J (1973) Monitoring the vernal advancements and retrogradation (greenwave effect) of nature vegetation. NASA/GSFC Final Report, NASA, Greenbelt

    Google Scholar 

  • Roy PS, Ravan SA (1996) Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. J Biosci 2:535–561

    Google Scholar 

  • Saatchi SS, Houghton RA, Dos Santos Alvala RC, Soares JV, Yu Y (2007a) Distribution of aboveground live biomass in the Amazon Basin. Glob Change Biol 13:816–837. doi:10.1111/j.1365-2486.2007.01323.x

    Google Scholar 

  • Saatchi SS, Houghton RA, Dos Santos Alvala RC, Soares JV, Yu Y (2007b) Distribution of aboveground live biomass in the Amazon basin. Glob Change Biol 13:816–837

    Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108(24):9899–99044

    Google Scholar 

  • Salvador R, Pons X (1998) On the reliability of Landsat TM for estimating forest variables by regression techniques: a methodological analysis. IEEE Trans Geosci Remote Sens 36:1888–1897

    Google Scholar 

  • Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ 115:968–977

    Google Scholar 

  • Schull MA, Ganguly S, Samanta A, Huang D, Shabanov NV, Jenkins JP, Chiu JC, Marshak A, Blair JB, Myneni RB, Knyazikhin Y (2007) Physical interpretation of the correlation between multiangle spectral data and canopy height. Geophys Res Lett 34:L18405. doi:10.1029/2007GL031143

    Google Scholar 

  • Segura M and Kanninen M (2005) Allometric models for tree volume and total aboveground biomass in atropical humid forest in Costa Rica. Biotropica 37:2–8

    Google Scholar 

  • Slatton KC, Crawford MM, Evans BL (2001) Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights. IEEE Trans Geosci Remote Sens 39(11):2470–2482

    Google Scholar 

  • Soenen SA, Peddle DR, Hall RJ et al (2010) Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ 114(7):1325–1337. doi:10.1016/j.rse.2009.12.012

    Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

    Google Scholar 

  • Sun G, Ranson KJ (1995) A three-dimensional radar backscatter model of forest canopies. IEEE Trans Geosci Remote Sens 33(2):372–382

    Google Scholar 

  • Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB (2011) Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens Environ 115:2917–2930

    Google Scholar 

  • Ter-Mikaelian MT, Korzukin MD (1997) Biomass equations for sixty-five North America tree species. For Ecol Manag 97:1–24

    Google Scholar 

  • Tomppo E (1991) Satellite Image-Based National Forest Inventory of Finland. In: Proceedings of the symposium on Global and Environmental Monitoring, Techniques and Impacts. September 17–21, 1990 Victoria, British Columbia Canada. International Archives of Photogrammetry and Remote Sensing, Vol 28, Part 7-1, pp 419–424

    Google Scholar 

  • Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variable sin k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92:1–20

    Google Scholar 

  • Tomppo E, Goulding C, Katila M (1999) Adapting Finnish multi-source forest inventory techniques to the New Zealand preharvest inventory. Scand J For Res 14:182–192

    Google Scholar 

  • Tomppo E, Korhonen KT, Heikkinen J, Yli-Kojola H (2001) Multisource inventory of the forests of the Hebei Forestry Bureau, Heilongjiang, China. Silva Fennica 35(3):309–328

    Google Scholar 

  • Tomppo E, Czaplewski R, Mäkisara K (2002) The role of remote sensing in global forest assessment. FAO Forest Resource Assessment Programme Working Paper 61.pp 90

    Google Scholar 

  • Treuhaft RN, Siqueira PR (2000) Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci 35:141–177

    Google Scholar 

  • Treuhaft RN, Madsen SN, Moghaddam M, Van Zyl JJ (1996) Vegetation characteristics and surface topography from interferometric radar. Radio Science 31:1449–1485

    Google Scholar 

  • Trotter CM, Dymond JR, Goulding CJ (1997) Estimation of timber volume in a coniferous plantation forest using Landsat TM. Int J Remote Sens 18:2209–2223

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Google Scholar 

  • Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. Bioscience 54:573–584

    Google Scholar 

  • Ulaby FT, Sarabandi K, McDonald K, Whitt M, Dobson MC (1990) Michigan Microwave Canopy Scattering Model. Int J Remote Sens 11(7):1223–1253

    Google Scholar 

  • Van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC DeFries RS, Jin Y, and van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scanner. ISPRS J Photogramm Remote Sens 60:100–112

    Google Scholar 

  • Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452

    Google Scholar 

  • Wang Z, Schaaf CB, Lewis P, Knyazikhin Y, Schull MA, Strahler AH, Yao T, Myneni RB, Chopping M (2011) Retrieval of canopy vertical structure using MODIS data. Remote Sens Environ 115(6):1595–1601

    Google Scholar 

  • Walker WS, Kellndorfer JM, LaPoint E, Hoppus M, Westfall J (2007) An empirical InSAR optical fusion approach to mapping vegetation height. Remote Sens Environ 109:482–499

    Google Scholar 

  • Wirth C, Schumacher J, Schulze E (2004) Generic biomass functions for Norway spruce in Central Europe-a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139

    Google Scholar 

  • Wofsy SC, Harris RC (2002) The North American carbon program (NACP): report of the NACP Committee of the U.S. Interagency Carbon Cycle Science Program. U.S. Global Change Research Program, Washington, D.C.

    Google Scholar 

  • Woodcock CA, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W et al (2008) Free access to landsat imagery. Science 320(5879):1011

    Google Scholar 

  • Wu Y, Strahler AH (1994) Remote estimation of crown size, stand density, and biomass on the Oregon transect. Ecol Appl 4:299–312

    Google Scholar 

  • Wulder M, St-Onge B, Treitz P (2000) Three-dimensional analysis of forest structure and terrain using LIDAR technology. GEOIDE Calgary 2000, From Ideas to Innovation-Geomatics for a New Millennium, Calgary, 25–26 May 2000

    Google Scholar 

  • Yang W, Ni-Meister W, Lee S (2011) Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geo-metric optical and radiative transfer model. Remote Sens Environ 15(11):2810–2822

    Google Scholar 

  • Zeng Y, Schaepman ME (2009) Quantitative forest canopy structure assessment using an inverted geometric-optical model and up-scaling. Int J Remote Sens 30(6):1385–1406

    Google Scholar 

  • Zhang X, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric model and MODIS product data. Geophys Res Lett 33:L09402. doi:10.1029/2006GL025879

    Google Scholar 

  • Zhang X, Schaaf CB, Friedl MA, Strahler AH, Gao F, Hodges JC (2002) MODIS tasseled cap transformation and its utility. Proceedings of IEEE 2002 international geoscience and remote sensing symposium and the 24th Canadian symposium on remote sensing, 24–28 June 2002, Toronto, pp 1149–1151

    Google Scholar 

  • Zhang X, Kondragunta S, Ram J, Schmidt C, Huang HC (2012) Near-real-time global biomass burning emissions product from geostationary satellite constellation. J Geophys Res 117:D14201. doi:10.1029/2012JD017459

    Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bressee M, Moine JL, Ryu S (2004) Estimating aboveground biomass using Landsat ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93(3):402–411

    Google Scholar 

  • Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding . (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X., Ni-meister, W. (2014). Remote Sensing of Forest Biomass. In: Hanes, J. (eds) Biophysical Applications of Satellite Remote Sensing. Springer Remote Sensing/Photogrammetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25047-7_3

Download citation

Publish with us

Policies and ethics