Skip to main content

Environment Characterization for Non-recontaminating Frontier-Based Robotic Exploration

  • Conference paper
Agents in Principle, Agents in Practice (PRIMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7047))

Abstract

This paper addresses the problem of obtaining a concise description of a physical environment for robotic exploration. We aim to determine the number of robots required to clear an environment using non-recontaminating exploration. We introduce the medial axis as a configuration space and derive a mathematical representation of a continuous environment that captures its underlying topology and geometry. We show that this representation provides a concise description of arbitrary environments, and that reasoning about points in this representation is equivalent to reasoning about robots in physical space. We leverage this to derive a lower bound on the number of required pursuers. We provide a transformation from this continuous representation into a symbolic representation. Finally, we present a generalized pursuit-evasion algorithm. Given an environment we can compute how many pursuers we need, and generate an optimal pursuit strategy that will guarantee the evaders are detected with the minimum number of pursuers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M., Racke, H., Sivadasan, N., Sohler, C., Vocking, B.: Randomized pursuit-evasion in graphs. Combinatorics, Probability and Computing 12(03), 225–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form 19, 362–380 (1967)

    Google Scholar 

  3. Burgos, J.L.: Pursuit/evasion behaviors for multi-agent systems (2010)

    Google Scholar 

  4. Choi, H., Choi, S., Moon, H.: Mathematical theory of medial axis transform. Pacific Journal of Mathematics 181(1), 57–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Danielsson, P.: Euclidean distance mapping. Computer Graphics and Image Processing 14(3), 227–248 (1980)

    Article  Google Scholar 

  6. Dimitrov, P., Phillips, C., Siddiqi, K.: Robust and efficient skeletal graphs. In: CVPR, p. 1417. IEEE Computer Society (2000)

    Google Scholar 

  7. Durham, J.W., Franchi, A., Bullo, F.: Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3562–3568. IEEE (2010)

    Google Scholar 

  8. Gerkey, B., Thrun, S., Gordon, G.: Visibility-based pursuit-evasion with limited field of view. The International Journal of Robotics Research 25(4), 299 (2006)

    Article  Google Scholar 

  9. Giblin, P.J., Kimia, B.B.: Local forms and transitions of the medial axis. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations, Computational Imaging and Vision, vol. 37, pp. 37–68. Springer, Netherlands (2008)

    Google Scholar 

  10. Guibas, L., Latombe, J., Lavalle, S., Lin, D., Motwani, R.: Visibility-based pursuit-evasion in a polygonal environment. Algorithms and Data Structures 1272, 17–30 (1997)

    Google Scholar 

  11. Guibas, L.J., Holleman, C., Kavraki, L.E.: A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999, vol. 1, pp. 254–259. IEEE (1999)

    Google Scholar 

  12. Guibas, L., Latombe, J., LaValle, S., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. Intnl. Journal of Computational Geometry and Applications 9(4/5), 471 (1999)

    Article  MathSciNet  Google Scholar 

  13. Holleman, C., Kavraki, L.E.: A framework for using the workspace medial axis in prm planners. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1408–1413. IEEE (2000)

    Google Scholar 

  14. Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. In: Proc. Robotics, Systems, & Science (2005)

    Google Scholar 

  15. Kolling, A., Carpin, S.: The graph-clear problem: definition, theoretical properties and its connections to multirobot aided surveillance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 1003–1008. IEEE (2007)

    Google Scholar 

  16. Kolling, A., Carpin, S.: Multi-robot surveillance: an improved algorithm for the graph-clear problem. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2360–2365. IEEE (2008)

    Google Scholar 

  17. Kolling, A., Carpin, S.: Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics 26(1), 32–47 (2010)

    Article  Google Scholar 

  18. Kuijper, A.: Deriving the medial axis with geometrical arguments for planar shapes. Pattern Recognition Letters 28(15), 2011–2018 (2007)

    Article  Google Scholar 

  19. LaValle, S., Lin, D., Guibas, L., Latombe, J., Motwani, R.: Finding an unpredictable target in a workspace with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 737–742. IEEE (1997)

    Google Scholar 

  20. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Mathematics 43(2-3), 235–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parsons, T.: Pursuit-evasion in a graph. Theory and Applications of Graphs 642, 426–441 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rodriguez, S., Denny, J., Zourntos, T., Amato, N.M.: Toward Simulating Realistic Pursuit-Evasion using a Roadmap-Based Approach. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 82–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Sachs, S., LaValle, S., Rajko, S.: Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research 23(1), 3 (2004)

    Article  Google Scholar 

  24. Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1983); [Review by Fensen, EB in: J. Microsc. 131 (1983) 258.] Technique Staining Microscopy, Review article General article, Mathematics, Cell size (PMBD, 185707888) (1982)

    Google Scholar 

  25. Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing 21, 863 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Volkov, M., Cornejo, A., Lynch, N., Rus, D.: Environment characterization for non-recontaminating frontier-based robotic exploration (full version) (2011), http://people.csail.mit.edu/mikhail/volkov2011environment-full.pdf

  27. Wilmarth, S., Amato, N., Stiller, P.: Maprm: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1024–1031. IEEE (1999)

    Google Scholar 

  28. Yamashita, M., Umemoto, H., Suzuki, I., Kameda, T.: Searching for mobile intruders in a polygonal region by a group of mobile searchers. Algorithmica 31(2), 208–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 146–151. IEEE (1997)

    Google Scholar 

  30. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Volkov, M., Cornejo, A., Lynch, N., Rus, D. (2011). Environment Characterization for Non-recontaminating Frontier-Based Robotic Exploration. In: Kinny, D., Hsu, J.Yj., Governatori, G., Ghose, A.K. (eds) Agents in Principle, Agents in Practice. PRIMA 2011. Lecture Notes in Computer Science(), vol 7047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25044-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25044-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25043-9

  • Online ISBN: 978-3-642-25044-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics