Skip to main content

An Investigation of Emergent Collaboration under Uncertainty and Minimal Information in Energy Domains

  • Conference paper
  • 1163 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7047))

Abstract

We study the phenomenon of evolution of cooperation in the electricity domain, where self-interested agents representing distributed energy resources (DERs) strategize for maximizing payoff. From the system’s viewpoint cooperation represents a solution capable to cope with the increasing complexity, generated by the introduction of DERs to the grid. The problem domain is modelled from a multi-agent system high-level perspective. We report on experiments with this model, giving the underlying understanding for the emergent behavior, in order to determine if and under what conditions such a collaborative behavior would hold. Finally we suggest how insights from this model can inspire mechanisms to instill cooperation as the dominant strategy.

This work was supported by the projects AT (CONSOLIDER CSD2007-0022, INGENIO 2010) and OVAMAH (TIN2009-13839-C03-02).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  2. Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., Jennings, N.: Cooperatives of distributed energy resources for efficient virtual power plants. In: Proc. of the Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 787–794 (May 2011)

    Google Scholar 

  3. Dimeas, A.L., Hatziargyriou, N.D.: Operation of a multiagent system for microgrid control. IEEE Transactions on Power Systems 20(3), 1447–1455 (2005)

    Article  Google Scholar 

  4. Department of Energy and Climate Change: Smarter grids: The opportunity (2009), http://www.decc.gov.uk/assets/decc/smartergridsopportunity.pdf

  5. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Hammerstrom, J., Brous, J., Chassin, D.P., Horst, G.R., Kajfasz, R., Michie, P., Oliver, T.V., Carlon, T.A., Eustis, C., Jarvegren, O.M., Marek, W., Munson, R.L., Pratt, R.G.: Pacific northwest gridwise testbed demonstration projects part ii grid friendly appliance project. Tech. rep., Pacific Northwest National Laboratory, Richland, WA, tech. Rep. PNNL-17079 (October 2007), http://gridwise.pnnl.gov/docs/op_project_final_report_pnnl17167.pdf

  7. Hofmann, L.M., Chakraborty, N., Sycara, K.: The evolution of cooperation in self-interested agent societies: A critical study. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, pp. 685–692. International Foundation for Autonomous Agents and Multiagent Systems (2011)

    Google Scholar 

  8. Kamboj, S., Kempton, W., Decker, K.S.: Deploying power grid-integrated electric vehicles as a multi-agent system. In: Proceedings of the Tenth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 13–20 (May 2011)

    Google Scholar 

  9. Kok, J.K., Warmer, C.J., Kamphuis, I.G.: Powermatcher: multiagent control in the electricity infrastructure. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 75–82. ACM, New York (2005)

    Chapter  Google Scholar 

  10. Mcarthur, S.D.J., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci, F., Funabashi, T.: Multi-Agent Systems for Power Engineering Applications Part I: Concepts, Approaches and Technical Challenges. IEEE Transactions on Power Systems 22(4), 1743–1752 (2007)

    Article  Google Scholar 

  11. Mihailescu, R.C., Vasirani, M., Ossowski, S.: Dynamic coalition formation and adaptation for virtual power stations in smart grids. In: Proc. of the 2nd Int. Workshop on Agent Technologies for Energy Systems, pp. 85–88 (2011)

    Google Scholar 

  12. Mihailescu, R.-C., Vasirani, M., Ossowski, S.: An organizational approach to agent-based virtual power stations via coalitional games. In: Proceedings of International Conference on Practical Applications of Agents and Multi-Agent Systems, Salamanca, Spain, pp. 125–134 (April 2011)

    Google Scholar 

  13. Pielke, M., Troschel, M., Kurrat, M., Appelrath, H.J.: Operation strategies to integrate chp micro units in domestic appliances into the public power supply. In: Proceedings of the VDE- Kongress (2008)

    Google Scholar 

  14. Pudjianto, D., Ramsay, C., Strbac, G.: Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation 1(1), 10–16 (2007)

    Article  Google Scholar 

  15. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103, 3490–3494 (2006)

    Article  Google Scholar 

  16. Trudnowski, D., Donnelly, M., Lightner, E.: Power-system frequency and stability control using decentralized intelligent loads. In: 2005/2006 PES TD Conference and Exposition, pp. 1453–1459 (2005)

    Google Scholar 

  17. Vytelingum, P., Voice, T.D., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Agent-based micro-storage management for the smart grid. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, pp. 39–46. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  18. Zimmermann, M.G., Eguiluz, V.M.: Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 72(5), 56118 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihailescu, RC., Vasirani, M., Ossowski, S. (2011). An Investigation of Emergent Collaboration under Uncertainty and Minimal Information in Energy Domains. In: Kinny, D., Hsu, J.Yj., Governatori, G., Ghose, A.K. (eds) Agents in Principle, Agents in Practice. PRIMA 2011. Lecture Notes in Computer Science(), vol 7047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25044-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25044-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25043-9

  • Online ISBN: 978-3-642-25044-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics