Skip to main content

Adaption of Stepsize Parameter Using Newton’s Method

  • Conference paper
Agents in Principle, Agents in Practice (PRIMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7047))

  • 1153 Accesses

Abstract

A method to optimize stepsize parameters in exponential moving average (EMA) based on Newton’s method to minimize square errors is proposed. The stepsize parameters used in reinforcement learning methods should be selected and adjusted carefully for dynamic and non-stationary environments. To find the suitable values for the stepsize parameters through learning, a framework to acquire higher-order derivatives of learning values by the stepsize parameters has been proposed. Based on this framework, the authors extend a method to determine the best stepsize using Newton’s method to minimize EMA of square error of learning. The method is confirmed by mathematical theories and by results of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonarini, A., Lazaric, A., de Cote, E.M., Restelli, M.: Improving cooperation among self-interested reinforcement learning agents. In: Proc. of Workshop on Reinforcement Learning in Non-Stationary Environments. ECML-PKDD 2005 (October 2005)

    Google Scholar 

  2. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215–250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Even-dar, E., Mansour, Y.: Learning rates for q-learning. Journal of Machine Learning Research 5, 2003 (December 2003)

    Google Scholar 

  4. George, A.P., Powell, W.B.: Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming. Machine learning 65(1), 167–198 (2006)

    Article  Google Scholar 

  5. Noda, I.: Adaptation of stepsize parameter for non-stationary environments by recursive exponential moving average. In: Prof. of ECML 2009 LNIID Workshop, ECML, pp. 24–31 (September 2009)

    Google Scholar 

  6. Noda, I.: Recursive Adaptation of Stepsize Parameter for Non-stationary Environments. In: Taylor, M.E., Tuyls, K. (eds.) ALA 2009. LNCS, vol. 5924, pp. 74–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Sato, M., Kimura, H., Kobayashi, S.: TD algorithm for the variance of return and mean-variance reinforcement learning (in japanese). Transactions of the Japanese Society for Artificial Intelligence 16(3F), 353–362 (2001)

    Article  Google Scholar 

  8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noda, I. (2011). Adaption of Stepsize Parameter Using Newton’s Method. In: Kinny, D., Hsu, J.Yj., Governatori, G., Ghose, A.K. (eds) Agents in Principle, Agents in Practice. PRIMA 2011. Lecture Notes in Computer Science(), vol 7047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25044-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25044-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25043-9

  • Online ISBN: 978-3-642-25044-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics