Skip to main content

Consensus Policy Based Multi-agent Negotiation

  • Conference paper
Agents in Principle, Agents in Practice (PRIMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7047))

Abstract

Multiagent negotiation may be understood as a consensus based group decision-making which ideally should seek the agreement of all the participants. However, there exist situations where an unanimous agreement is not possible or simply the rules imposed by the system do not seek such unanimous agreement. In this paper we propose to use a consensus policy based mediation framework (CPMF) to perform multiagent negotiations. This proposal fills a gap in the literature where protocols are in most cases indirectly biased to search for a quorum. The mechanisms proposed to perform the exploration of the negotiation space are derived from the Generalized Pattern Search non-linear optimization technique (GPS). The mediation mechanisms are guided by the aggregation of the agent preferences on the set of alternatives the mediator proposes in each negotiation round. Considerable interest is focused on the implementation of the mediation rules where we allow for a linguistic description of the type of agreements needed. We show empirically that CPMF efficiently manages negotiations following predefined consensus policies and solves situations where unanimous agreements are not viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehtamo, H., Hamalainen, R.P., Heiskanen, P., Teich, J., Verkama, M., Zionts, S.: Generating pareto solutions in a two-party setting: constraint proposal methods. Management Science 45(12), 1697–1709 (1999)

    Article  MATH  Google Scholar 

  2. Heiskanen, P., Ehtamo, H., Hamalainen, R.P.: Constraint proposal method for computing pareto solutions in multi-party negotiations. European Journal of Operational Research 133(1), 44–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ito, T., Klein, M., Hattori, H.: A multi-issue negotiation protocol among agents with nonlinear utility functions. Journal of Multiagent and Grid Systems 4(1), 67–83 (2008)

    Article  MATH  Google Scholar 

  4. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Protocols for negotiating complex contracts. IEEE Intelligent Systems 18(6), 32–38 (2003)

    Article  MATH  Google Scholar 

  5. Lai, G., Sycara, K.: A generic framework for automated multi-attribute negotiation. Group Decision and Negotiation 18, 169–187 (2009)

    Article  Google Scholar 

  6. Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now. Journal of Computational and Applied Mathematics 124, 191–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, M., Vo, Q.B., Kowalczyk, R.: Searching for fair joint gains in agent-based negotiation. In: Decker, Sichman, Sierra, Castelfranchi (eds.) Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May, 10-15, pp. 1049–1056 (2009)

    Google Scholar 

  8. Lopez-Carmona, M.A., Marsa-Maestre, I., De La Hoz, E., Velasco, J.R.: A region-based multi-issue negotiation protocol for nonmonotonic utility spaces. Computational Intelligence 27(2), 166–217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lopez-Carmona, M.A., Marsa-Maestre, I., Ibanez, G., Carral, J.A., Velasco, J.R.: Improving trade-offs in automated bilateral negotiations for expressive and inexpressive scenarios. Journal of Intelligent & Fuzzy Systems 21, 165–174 (2010)

    Google Scholar 

  10. Lopez-Carmona, M.A., Marsa-Maestre, I., Klein, M., Ito, T.: Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces. Journal of Autonomous Agents and Multiagent Systems, 1–51 (2010)

    Google Scholar 

  11. Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R., Ito, T., Klein, M., Fujita, K.: Balancing utility and deal probability for auction-based negotiations in highly nonlinear utility spaces. In: 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, California, USA, pp. 214–219 (July 2009)

    Google Scholar 

  12. Vo, Q.B., Padgham, L., Cavedon, L.: Negotiating flexible agreements by combining distributive and integrative negotiation. Intelligent Decision Technologies 1(1-2), 33–47 (2007)

    Article  Google Scholar 

  13. Yager, R.: Quantifier guided aggregation using owa operators. International Journal of Intelligent Systems 11, 49–73 (1996)

    Article  Google Scholar 

  14. Yager, R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer (1997)

    Google Scholar 

  15. Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications 9, 149–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Hoz, E., Lopez-Carmona, M.A., Klein, M., Marsa-Maestre, I. (2011). Consensus Policy Based Multi-agent Negotiation. In: Kinny, D., Hsu, J.Yj., Governatori, G., Ghose, A.K. (eds) Agents in Principle, Agents in Practice. PRIMA 2011. Lecture Notes in Computer Science(), vol 7047. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25044-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25044-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25043-9

  • Online ISBN: 978-3-642-25044-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics