Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 567 Accesses

Abstract

Tropical cyclones (TCs) are of the most extreme and dangerous weather phenomena on Earth. In the United States, landfalling TCs account for an average of $10 billion in damages annually [50].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Pielke et al. [50], adjusted to 2005 inflation level.

  2. 2.

    From the article entitled “Preliminary Swiss Re sigma estimates that over 238,000 people were killed by catastrophes in 2008, insured losses soar to USD 50 billion”, Swiss Reinsurance Company Ltd, 2008.

References

  1. Bengtsson L, Böttger H, Kanamitsu M (1982) Simulation of hurricane-type vortices in a general circulation model. Tellus A 34:440–457

    Article  Google Scholar 

  2. Bengtsson L, Hodges K, Esch M, Keenlyside N, Kornblueh L, Luo J-J, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus A 59:539–561

    Article  Google Scholar 

  3. Bessafi M, Wheeler M (2006) Modulation of South Indian Ocean tropical cyclones by the Madden-Julian oscillation and convectively coupled equatorial waves. Mon Weather Rev 134:638–656

    Article  Google Scholar 

  4. Broccoli A, Manabe S (1990) Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys Res Lett 17:1917–1920

    Article  Google Scholar 

  5. Chan JCL (1985) Tropical cyclone activity in the Northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Mon Weather Rev 113:599–606

    Article  Google Scholar 

  6. Chan JCL (2006) Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311:1713b–1713b

    Article  Google Scholar 

  7. Chan JCL (2008) Decadal variations of intense typhoon occurrence in the western North Pacific. Proc R Soc A 464:249–272

    Article  Google Scholar 

  8. Chan JCL, Xu M (2009) Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: time series analysis. Int J Climatol 29:1285–1293

    Article  Google Scholar 

  9. Chang E, Guo Y (2007) Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys Res Lett 34:L14801

    Article  Google Scholar 

  10. Chauvin F, Royer J-F, Déqué M (2006) Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climate at high resolution. Clim Dyn. 27:377–399

    Article  Google Scholar 

  11. Davis C, Wang W, Dudhia J, Torn R (2010) Does increased horizontal resolution improve hurricane wind forecasts? Weather Forcast 25:1826–1841

    Article  Google Scholar 

  12. Dvorak V (1984) Tropical cyclone intensity analysis using satellite data. NOAA Technical Report NESDIS 11, p 47

    Google Scholar 

  13. Elsner J, Kossin J, Jagger T (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95

    Article  Google Scholar 

  14. Emanuel K (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155

    Article  Google Scholar 

  15. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  16. Gillet N, Scott P, Santer B (2008) Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys Res Lett 35:L09707

    Article  Google Scholar 

  17. Goldenberg S, Landsea C, Mestas-Nuñez A, Gray W (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  18. Gray W (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96(10):669–700

    Article  Google Scholar 

  19. Gray W (1984) Atlantic seasonal hurricane frequency. Part I: El Nino and 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668

    Article  Google Scholar 

  20. Hall J, Matthews A, Karoly D (2001) The modulation of tropical cyclone activity in the Australian region by the Madden-Julian oscillation. Mon Weather Rev 129:2970–2982

    Article  Google Scholar 

  21. Holland G (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  22. Holland G (2007) Misuse of landfall as a proxy for Atlantic tropical cyclone activity. EOS Trans 88:349–350

    Article  Google Scholar 

  23. Holland G, Webster P (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos Trans A 365:2695–2716

    Article  Google Scholar 

  24. Holland G (2008) A revised hurricane pressure–wind model. Mon Weather Rev 136:3432–3445

    Article  Google Scholar 

  25. Holland G, Done J, Bruyere C, Cooper C, Suzuki-Parker A (2010) Model investigation of the effects of climate variability and change on future Gulf of Mexico tropical cyclone activity. OTC Metocean 2010, p 13

    Google Scholar 

  26. Hoyos C, Agudelo P, Webster P, Curry J (2005) Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312:94–97

    Article  Google Scholar 

  27. Kim H-M, Webster P, Curry J (2009) Impact of shifting patterns of Pacific ocean warming on North Atlantic tropical cyclones. Science 325(5936):77–80

    Article  Google Scholar 

  28. Knapp K, Kruk M (2009) Quantifying inter-agency differences in tropical cyclone best track wind speed estimates. Mon Weather Rev 138:1459–1473

    Article  Google Scholar 

  29. Knapp K, Kruk M, Levinson D, Diamond H, Neumann C (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376

    Article  Google Scholar 

  30. Knutson T, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Clim 8:2181–2199

    Article  Google Scholar 

  31. Knutson T, Tuleya R, Kurihara Y (1998) Simulated increase of hurricane intensities in a CO2-warmed climate. Science 279:1018–1020

    Article  Google Scholar 

  32. Knutson T, Sirutis J, Garner S, Held I (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull Am Soc 88:1549–1565

    Article  Google Scholar 

  33. Knutson T, Sirutis J, Garner S, Vecchi G, Held I (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364

    Article  Google Scholar 

  34. Kossin J, Valden C (2004) A pronounced bias in tropical cyclone minimum sea level pressure estimation based on the Dvorak technique. Mon Weather Rev 132(1):165–173

    Article  Google Scholar 

  35. Kossin J, Vimont J (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88(11):1767–1781

    Article  Google Scholar 

  36. Landman W, Seth A, Camargo S (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the Southwestern Indian ocean. J Clim 18(8):1263–1274

    Article  Google Scholar 

  37. Landsea C (2007) Counting Atlantic tropical cyclones back to 1900. EOS Trans 88(18):197–208

    Article  Google Scholar 

  38. Liebmann B, Hendon H, Glick J (1994) The relationship between tropical cyclones of the western Pacific and Indian oceans and the Madden-Julian oscillation. J Meteorol Soc Jpn 72(41):401–412

    Google Scholar 

  39. Lighthill J, Holland G, Gray W, Landsea C, Craig G, Evans J, Kurihara Y, Guard C (1994) Global climate change and tropical cyclones. Bull Am Meteorol Soc 75(11):2147–2157

    Google Scholar 

  40. Liu K, Chan JCL (2008) Interdecadal variability of western North Pacific tropical cyclone tracks. J Clim 21(17):4464–4476

    Article  Google Scholar 

  41. Maddan RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  42. Maloney ED, Hartmann DL (2000) Modulation of eastern north Pacific hurricanes by the Madden-Julian oscillation. J Clim 13:1451–1460

    Article  Google Scholar 

  43. Maloney ED, Hartmann DL (2000) Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 287(5460):2002–2004

    Article  Google Scholar 

  44. Manabe S, Holloway J Jr, Stone H (1970) Tropical circulation in a time-integration of a global model of the atmosphere. J Atmos Sci 27:580–612

    Article  Google Scholar 

  45. Mann M, Emanuel K (2006) Atlantic hurricane trends linked to climate change. EOS Trans 87(24):233–244

    Article  Google Scholar 

  46. McBride J (1984) Comments on “Simulation of hurricane-type vortices in a general circulation model”. Tellus A 36(1):92–93

    Article  Google Scholar 

  47. Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. SOLA 6:73–76

    Article  Google Scholar 

  48. Murakami H, Wang B (2010) Future change of North atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Clim 23:1699–2721

    Article  Google Scholar 

  49. Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmosphere model: frequency and wind intensity analysis. J Meteorol Soc Jpn 84(2):259–276

    Article  Google Scholar 

  50. Pielke R Jr, Gratz J, Landsea C, Collins D, Saunders M, Musulin R (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Haz Rev 9(1):29–42

    Article  Google Scholar 

  51. Saunders M, Lea A (2008) Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178):557–560

    Article  Google Scholar 

  52. Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. SOLA 5:164–167

    Article  Google Scholar 

  53. Swanson K (2008) Nonlocality of Atlantic tropical cyclone intensities. Geochem Geophys Geosyst 9 doi:10.1029/2007GC001844

  54. Tsutsui J (2002) Implication of anthropogenic climate change for tropical cyclone activity: a case study with the NCAR CCM2. J. Meteorol Soc Jpn 80(1):45–65

    Article  Google Scholar 

  55. Vecchi G, Solden B (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450(7172):1066–1070

    Article  Google Scholar 

  56. Vecchi G, Swanson K, Soden B (2008) Whither hurricane activity. Science 322(5902):687–689

    Article  Google Scholar 

  57. Vecchi G, Knutson T (2008) On estimates of historical North Atlantic tropical cyclone activity. J Clim 21(14):3580–3600

    Article  Google Scholar 

  58. Villarini G, Vecchi G, Knutson T, Zhao M, Smith J (2011) North Atlantic tropical storm frequency response to anthropogenic forcing: projections and sources of uncertainty. J Clim doi:10.1175/2011JCL13853.1

  59. Walsh K, Nguyen K–C, McGregor J (2004) Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22(1):47–56

    Article  Google Scholar 

  60. Walsh K, Fiorino M, Landsea C, McInnes K (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalysis. J Clim 20(10):2307–2314

    Article  Google Scholar 

  61. Webster P, Holland G, Curry J, Chang H (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  Google Scholar 

  62. Wu M-C, Yeung K-H, Chang W-L (2006) Trends in western North Pacific tropical cyclone intensity. EOS Trans 87(48):537–548

    Article  Google Scholar 

  63. Wu L, Tao L, Ding Q (2010) Influence of sea surface warming on environmental factors affecting long-term changes of Atlantic tropical cyclone formation. J Clim 23(22):5978–5989

    Article  Google Scholar 

  64. Zhang R, Delworth TL (2009) A new model for attributing climate variations over the Atlantic hurricane basin’s main development region. Geophys Res Lett 36:L06701

    Article  Google Scholar 

  65. Zhao M, Held I, Lin S-L, Vecchi G (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22(24):6653–6678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asuka Suzuki-Parker .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki-Parker, A. (2012). Introduction. In: Uncertainties and Limitations in Simulating Tropical Cyclones. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25029-3_1

Download citation

Publish with us

Policies and ethics