Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This review addresses work on effect of burning high-ash and high-sulfur coal within the boiler equipment and environment. Within the boiler equipment, erosion of boiler accessories due to coal fly-ash impaction is reviewed, along with: ultrasound-assisted particle breakage; application of ultrasound in various fields; some of the patented ultrasonic coal-wash process for de-ashing; existing conventional chemical-based de-sulfurization methods and their demerits relative to ultrasonic methods; mechanism of ultrasound in aqueous medium and its contribution towards high-sulfur coal de-sulfurization; and, ultrasound-assisted high-sulfur coal and high-sulfur diesel fuel de-sulfurization already initiated by other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103

    Article  Google Scholar 

  2. Hutchings IM, Winter RE (1974) Particle erosion of ductile materials: a mechanism of material removal. Wear 27:121–128

    Article  CAS  Google Scholar 

  3. Jennings WH, Head WJ Jr, Mannings CR (1976) A mechanistic model for the prediction of ductile erosion. Wear 40:93

    Article  CAS  Google Scholar 

  4. Soo SL (1977) A note on erosion by moving dust particles. Powder Technol 17:259–263

    Article  Google Scholar 

  5. Foley T, Levy A (1983) The erosion of heat-treated steels. Wear 91:45–64

    Article  CAS  Google Scholar 

  6. Sundararajan G, Shewmon PG (1983) A new model for the erosion of metals at normal incidence. Wear 84:237–258

    Article  Google Scholar 

  7. Levy AV, Yan J, Patterson J (1986) Elevated temperature erosion of steels. Wear 108:43–60

    Article  CAS  Google Scholar 

  8. Meng HC, Ludema KC (1995) Wear models and predictive equations: their form and content. Wear 181:443–457

    Article  Google Scholar 

  9. Wang BQ (1995) Erosion-corrosion of coatings by bio-mass-fired boiler fly ash. Wear 188:40–48

    Article  CAS  Google Scholar 

  10. Xie J, Walsh PM (1995) Erosion-corrosion of carbon steel by products of coal combustion. Wear 186:256–265

    Article  Google Scholar 

  11. Hubner W, Leitel E (1996) Peculiarities of erosion-corrosion processes. Tribol Int 29:199–206

    Article  Google Scholar 

  12. Oka YI, Olmogi H, Hosokawa T, Matsumura M (1997) The impact angle dependence of erosion damage caused by solid particle impact. Wear 203:573–579

    Article  Google Scholar 

  13. Hussainova I, Kubarsepp J, Shcheglov I (1999) Investigation of impact of solid particles against hard metal and cermets targets. Tribol Int 32:337–344

    Article  CAS  Google Scholar 

  14. Lyczkowski RN, Bouillard JX (2002) State-of-the-art review of erosion modeling in fluid/solids systems. Prog Energy Combust Sci 28:543–602

    Article  CAS  Google Scholar 

  15. Mbabazi JG, Sheer TJ, Shandu R (2004) A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear 257:612–624

    Article  CAS  Google Scholar 

  16. Marcus K, Moumakwa DO (2005) Tribology in coal-fired power plants. Tribol Int 38:805–811

    Article  Google Scholar 

  17. Das SK, Godiwalla KM, Mehrotra SP, Sastry KKM, Dey PK (2006) Analytical model for erosion behavior of impacted fly-ash particles on coal-fired boiler components. Sadhana 31:583–595

    Article  CAS  Google Scholar 

  18. Vicenzi J, Villanova DL, Lima MD, Takimi AS, Marques CM, Bergmann CP (2006) HVOF-coatings against high temperature erosion (3,000 C) by coal fly ash in thermoelectric power plant. Mater Des 27:236–242

    Article  CAS  Google Scholar 

  19. Wang YF, Yang ZG (2008) Finite element model of erosive wear on ductile and brittle materials. Wear 265:871–878

    Article  CAS  Google Scholar 

  20. Steinberg M, Yang RT, Horn TK, Berlad AL (1977) Desulfurization of coal with ozone: an attempt. Fuel 56:227–228

    Article  CAS  Google Scholar 

  21. Araya PE, Ohlbaum RB, Droguett SE (1981) Study of the treatment of sub bituminous coals by NaOH solutions. Fuel 60:1127–1130

    Article  CAS  Google Scholar 

  22. Chandra D, Chakrabarti JN, Swamy YV (1982) Auto-desulfurization of coal. Fuel 61:204–205

    Article  CAS  Google Scholar 

  23. Krzymien LL (1982) Complete removal of sulfur from coal using solutions containing cupric ions. Fuel 61:871–873

    Article  Google Scholar 

  24. Chaung KC, Markuszewesky R, Wheelock TD (1983) Desulfurization of coal by oxidation in alkaline solutions. Fuel Process Technol 7:43–57

    Article  Google Scholar 

  25. Yang RT, Das SK, Tsai BMC (1985) Coal demineralization using sodium hydroxide and acid solutions. Fuel 65:735–742

    Article  Google Scholar 

  26. Kara H, Ceylan R (1988) Removal of sulfur from four central anatolian lignite’s by NaOH. Fuel 67:170–172

    Article  CAS  Google Scholar 

  27. Ahnonkitpanit E, Prasassarakich P (1989) Coal desulfurization in aqueous hydrogen peroxide. Fuel 68:819–824

    Article  CAS  Google Scholar 

  28. Ozdemmir M, Bayrakceken S, Gurses A, Gulaboglu S (1990) Desulfurization of two turkish lignite’s by chlorinolysis. Fuel Process Technol 26:15–23

    Article  Google Scholar 

  29. Ali A, Srivatsava SK, Haque R (1992) Chemical desulfurization of high sulfur coals. Fuel 71:835–839

    Article  CAS  Google Scholar 

  30. Prasassarakich P, Thaweesri T (1996) Kinetics of coal desulfurization with sodium benzoxide. Fuel 75:816–820

    Article  Google Scholar 

  31. Rodriguez RA, Jul CC, Limon DG (1996) The influence of process parameters on coal desulfurization by nitric leaching. Fuel 75:606–612

    Article  CAS  Google Scholar 

  32. Hamamci C, Kahraman F, Diiz MZ (1997) Desulfurization of southeastern anatolian asphaltites by the Meyers method. Fuel Process Technol 50:171–177

    Article  CAS  Google Scholar 

  33. Aacharya C, Kar RN, Sukla LB (2001) Bacterial removal of sulfur from three different coals. Fuel 80:2207–2216

    Article  Google Scholar 

  34. Mukherjee S, Borthakur PC (2001) Chemical demineralization/desulfurization of high sulfur coal using sodium hydroxide and acid solutions. Fuel 80:2037–2040

    Article  CAS  Google Scholar 

  35. Ratanakandilok S, Ngamprasertsith S, Prasassarakich P (2001) Coal desulfurization with methanol/water and methanol/KOH. Fuel 80:1937–1942

    Article  CAS  Google Scholar 

  36. Sonmez O, Giray ES (2001) The influence of process parameters on desulfurization of two turkish lignite’s by selective oxidation. Fuel Process Technol 70:159–169

    Article  CAS  Google Scholar 

  37. Aacharya C, Sukla LB, Misra VN (2005) Biological elimination of sulfur from high sulfur coal by aspergillus-like fungi. Fuel 84:1597–1600

    Google Scholar 

  38. Baruah BP, Saikia BK, Kotoky P, Rao PG (2006) Aqueous leaching on high sulfur sub-bituminous coals, in Assam, India. Energy Fuels 20:1550–1555

    Article  CAS  Google Scholar 

  39. Liu K, Yang JJ, Wang Y (2008) Desulfurization of coal via low temperature atmospheric alkaline oxidation. Chemosphere 71:183–188

    Article  CAS  Google Scholar 

  40. Yuda Y, Ayse T (1990) Supercritical extraction and desulfurization of Beypazari lignite by ethyl alcohol/NaOH treatment. 1. Effect of ethyl alcohol/coal ratio and NaOH. Pet Sci Technol 8:87–105

    Google Scholar 

  41. Li W, Guo S (1996) Supercritical desulfurization of high rank coal with alcohol/water and alcohol/KOH. Fuel Process Technol 46:143–155

    Article  CAS  Google Scholar 

  42. Charutawai K, Ngamprasertsisith S, Prasassarakich P (2003) Supercritical desulfurization of low rank coal with ethanol/KOH. Fuel Process Technol 84:207–216

    Article  CAS  Google Scholar 

  43. Mukherjee S, Borthakur PC (2003) Effect of leaching high sulfur sub bituminous coal by potassium hydroxide and acid on removal of mineral matter and sulfur. Fuel 82:783–788

    Article  CAS  Google Scholar 

  44. Mukherjee S, Borthakur PC (2004) Demineralization of sub bituminous high sulfur coal using mineral acids. Fuel Process Technol 85:157–164

    Article  CAS  Google Scholar 

  45. Alam HG, Mogaddam AG, Omidkhah MR (2009) The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching. Fuel Process Technol 90:1–7

    Article  CAS  Google Scholar 

  46. Fridman VM (1972) The interaction mechanism between cavitation bubbles and particles of the solid and liquid phases. Ultrasonics 10:162–165

    Article  CAS  Google Scholar 

  47. Kusters KA, Pratsinis SE, Thoma SG, Smith DM (1993) Ultrasonic fragmentation of agglomerate powders. Chem Eng Sci 48:4119–4127

    Article  CAS  Google Scholar 

  48. Kusters KA, Pratsinis SE, Thorna SG, Smith DM (1994) Energy-size reduction laws for ultrasonic fragmentation. Powder Technol 80:253–263

    Article  Google Scholar 

  49. Gopi KR, Nagarajan R (2008) Application of power ultrasound in cavitation erosion testing of nano-ceramic particle/polymer composites. Solid State Phenom 136:191–204

    Article  CAS  Google Scholar 

  50. Raman V, Abbas A (2008) Experimental investigations on ultrasound mediated particle breakage. Ultrason Sonochem 15:55–64

    Article  CAS  Google Scholar 

  51. Newman AP, Lorimer JP, Mason TJ, Hutt KR (1997) An investigation into the ultrasonic treatment of polluted solids. Ultrason Sonochem 4:153

    Article  CAS  Google Scholar 

  52. Kruger O, Schulze TL, Peters D (1999) Sonochemical treatment of natural ground water at different high frequencies. Ultrason Sonochem 6:123–128

    Article  CAS  Google Scholar 

  53. Farmer AD, Collings AF, Jameson GJ (2000) The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. Ultrason Sonochem 7:243–247

    Article  CAS  Google Scholar 

  54. Kim YU, Wang MC (2003) Effect of ultrasound on oil removal from soils. Ultrasonics 41:539–542

    Article  CAS  Google Scholar 

  55. Mason TJ, Collings A, Sumel A (2004) Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason Sonochem 11:205–210

    Article  CAS  Google Scholar 

  56. Cooke NE, Fuller OM, Gaikwad RP (1989) Ultrasonic extraction of coal. Fuel 68:1227–1233

    Article  CAS  Google Scholar 

  57. US Patent # 4741839, European Patent EP0259959 (1988) Ultrasonic vibrator tray processes and apparatus

    Google Scholar 

  58. British Patent # GB 2,139,245 (1984) ~ (CA 102:64815) ~ Coal cleaning with ultrasound

    Google Scholar 

  59. US Patent # 4,156,593 (1979) ~ (CA 91:94260) ~ “Ultrasonic wet-grinding coal”

    Google Scholar 

  60. Lindstrom O, Lamm O (1951) The chemical effects produced by ultrasonic waves. J Phys Chem 55:1139–1146

    Article  CAS  Google Scholar 

  61. Webster E (1963) Cavitation. Ultrasonics 1:39–48

    Article  CAS  Google Scholar 

  62. Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions evidence for OH and H+ by spin trapping. J Am Chem Soc 104:3537–3539

    Article  CAS  Google Scholar 

  63. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and non-aqueous solutions. Environ Health Perspect 64:233–252

    Article  CAS  Google Scholar 

  64. Christman CL, Carmichael AJ, Mossoba MM, Riesz P (1987) Evidence for free radicals produced in aqueous solutions by diagnostic ultrasound. Ultrasonics 25:31–34

    Article  CAS  Google Scholar 

  65. Misik V, Riesz P (1994) Free radicals formation by ultrasound in organic liquids: a spin trap and EPR study. J Phys Chem 98:1634–1640

    Article  CAS  Google Scholar 

  66. Misik V, Riesz P (1996) Peroxyl radical formation in aqueous solutions of n-dimethylformamide, n-methylformamide, and dimethylsulfoxide by ultrasound. Free Radical Biol Med 20:129–138

    Article  CAS  Google Scholar 

  67. Margulis MA (1994) Fundamental problems of sonochemistry and cavitation. Ultrason Sonochem 1:87–90

    Article  Google Scholar 

  68. Entezari MH, Krus P (1994) Effect of frequency on sono chemical reaction. Ultrason Sonochem 1:75–79

    Article  Google Scholar 

  69. Luche JL (1994) Effect of ultrasound on heterogeneous system. Ultrason Sonochem 1:111–118

    Article  Google Scholar 

  70. Jana AK, Chatterjee SN (1995) Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter. Ultrason Sonochem 2:87–91

    Article  Google Scholar 

  71. Henglein A (1995) Chemical effects of continuous and pulsed ultrasound in aqueous solutions. Ultrason Sonochem 2:115–121

    Article  Google Scholar 

  72. Hoffmann MR, Hua I, Hochemer R (1996) Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonic Sonochemistry 3:163–172

    Article  Google Scholar 

  73. Gogate PR, Tatake PA, Kanthale PM, Pandit AB (2002) Mapping of sonochemical reactors; Review, analysis and experimental verification. AIChE J 48:1542–1560

    Article  CAS  Google Scholar 

  74. Zaidi SAH (1993) Ultrasonically enhanced coal desulfurization. Fuel Process Technol 33:95–100

    Article  CAS  Google Scholar 

  75. Ze KW, Xin XH, Tao CJ (2007) Study of enhanced fine coal desulfurization and de-ashing by ultrasonic floatation. J Chin Univ Min Technol 17:358–362

    Article  Google Scholar 

  76. Grobas J, Bolivar C, Scott CE (2007) Hydro-desulfurization of benzothiophene and hydrogenation of cyclohexene, biphenyl, and quinoline, assisted by ultrasound, using formic acid as hydrogen precursor. Energy Fuels 21:19–22

    Article  CAS  Google Scholar 

  77. Wang Y, Yang RT (2007) Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration. Langmuir 23:3825–3831

    Article  CAS  Google Scholar 

  78. Mello PA, Duarte FA, Nunes MAG, Alencar MS, Moreira EM, Korn M, Dressler VL, Flores ÉMM (2009) Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Ultrason Sonochem 16:732–736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ambedkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambedkar, B. (2012). Literature Review. In: Ultrasonic Coal-Wash for De-Ashing and De-Sulfurization. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25017-0_2

Download citation

Publish with us

Policies and ethics