Parameterized Longest Previous Factor

  • Richard Beal
  • Donald Adjeroh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)


The longest previous factor (LPF) problem is defined for traditional strings exclusively from the constant alphabet Σ. A parameterized string (p-string) is a sophisticated string composed of symbols from a constant alphabet Σ and a parameter alphabet Π. We generalize the LPF problem to the parameterized longest previous factor (pLPF) problem defined for p-strings. Subsequently, we present a linear time solution to construct the pLPF array. Given our pLPF algorithm, we show how to construct the pLCP (parameterized longest common prefix) array in linear time. Our algorithm is further exploited to construct the standard LPF and LCP arrays all in linear time.


parameterized suffix array parameterized longest common prefix p-string p-match LPF LCP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and applications. Inf. Process. Lett. 106(2), 75–80 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Main, M.: Detecting leftmost maximal periodicities. Discrete Appl. Math. 25(1-2), 145–153 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baker, B.: A theory of parameterized pattern matching: Algorithms and applications. In: STOC 1993, pp. 71–80. ACM, New York (1993)Google Scholar
  5. 5.
    Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized matching. Inf. Process. Lett. 49, 111–115 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching. Algorithmica 39(1), 1–19 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baker, B.: Finding clones with dup: Analysis of an experiment. IEEE Trans. Software Eng. 33(9), 608–621 (2007)CrossRefGoogle Scholar
  8. 8.
    Zeidman, B.: Software v. software. IEEE Spectr. 47, 32–53 (2010)CrossRefGoogle Scholar
  9. 9.
    Tomohiro, I., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight Parameterized Suffix Array Construction. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 312–323. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized suffix arrays for binary strings. In: PSC 2008, Czech Republic, pp. 84–94 (2008)Google Scholar
  11. 11.
    Beal, R., Adjeroh, D.: p-Suffix Sorting as Arithmetic Coding. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 44–56. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Beal, R.: Parameterized Strings: Algorithms and Data Structures. MS Thesis. West Virginia University (2011)Google Scholar
  13. 13.
    Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput. 22, 935–948 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Smyth, W.: Computing Patterns in Strings. Pearson, New York (2003)Google Scholar
  16. 16.
    Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Compression, Suffix Arrays and Pattern Matching. Springer, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In: SODA 1995, pp. 541–550. ACM, Philadelphia (1995)Google Scholar
  18. 18.
    Idury, R., Schäffer, A.: Multiple matching of parameterized patterns. Theor. Comput. Sci. 154, 203–224 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Crochemore, M., Ilie, L., Smyth, W.: A simple algorithm for computing the Lempel Ziv factorization. In: DCC 2008, pp. 482–488 (2008)Google Scholar
  20. 20.
    Kasai, T., Lee, G., et al.: Linear-time Longest-common-prefix Computation in Suffix Arrays and its Applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Manzini, G.: Two Space Saving Tricks for Linear Time LCP Array Computation. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Kärkkäinen, J., Manzini, G., Puglisi, S.: Permuted Longest-common-prefix Array. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–192. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Puglisi, S., Turpin, A.: Space-time Tradeoffs for Longest-Common-prefix Array Computation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 124–135. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Fischer, J.: Wee LCP. Inf. Process. Lett. 110(8-9), 317–320 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Richard Beal
    • 1
  • Donald Adjeroh
    • 1
  1. 1.Lane Department of Computer Science and Electrical EngineeringWest Virginia UniversityMorgantownUnited States

Personalised recommendations