A New View on Rural Postman Based on Eulerian Extension and Matching

  • Manuel Sorge
  • René van Bevern
  • Rolf Niedermeier
  • Mathias Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)


We provide a new characterization of the NP-hard arc routing problem Rural Postman in terms of a constrained variant of minimum-weight perfect matching on bipartite graphs. To this end, we employ a parameterized equivalence between Rural Postman and Eulerian Extension, a natural arc addition problem in directed multigraphs. We indicate the NP-hardness of the introduced matching problem. In particular, we use it to make some partial progress towards answering the open question about the parameterized complexity of Rural Postman with respect to the number of weakly connected components in the graph induced by the required arcs. This is a more than thirty years open and long-time neglected question with significant practical relevance.


Weight Function Bipartite Graph Input Graph Reduction Rule Terminal Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assad, A.A., Golden, B.L.: Arc routing methods and applications. In: Network Routing. Handbooks in Operations Research and Management Science, vol. 8, pp. 375–483. Elsevier B.V. (1995)Google Scholar
  2. 2.
    Benavent, E., Corberán, A., Piñana, E., Plana, I., Sanchis, J.M.: New heuristic algorithms for the windy rural postman problem. Comput. Oper. Res. 32(12), 3111–3128 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cabral, E.A., Gendreau, M., Ghiani, G., Laporte, G.: Solving the hierarchical chinese postman problem as a rural postman problem. European J. Oper. Res. 155(1), 44–50 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient Algorithms for Eulerian Extension. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 100–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dror, M.: Arc Routing: Theory, Solutions, and Applications. Kluwer Academic Publishers (2000)Google Scholar
  7. 7.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural postman problem. Oper. Res. 43(3), 399–414 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Höhn, W., Jacobs, T., Megow, N.: On Eulerian extensions and their application to no-wait flowshop scheduling. J. Sched (to appear, 2011)Google Scholar
  11. 11.
    Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–280 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  13. 13.
    Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Perrier, N., Langevin, A., Campbell, J.F.: A survey of models and algorithms for winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow disposal. Comput. Oper. Res. 34(1), 258–294 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sorge, M.: On making directed graphs Eulerian. Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena (2011), Available electronically. arXiv:1101.4283 [cs.DM]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Sorge
    • 1
  • René van Bevern
    • 1
  • Rolf Niedermeier
    • 1
  • Mathias Weller
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTUBerlinGermany

Personalised recommendations