Advertisement

On Minimizing the Number of Label Transitions around a Vertex of a Planar Graph

  • Bojan Mohar
  • Petr Škoda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)

Abstract

We study the minimum number of label transitions around a given vertex v 0 in a planar multigraph G in which the edges incident with v 0 are labelled with integers 1, .…, l, where the minimum is taken over all embeddings of G in the plane. For a fixed number of labels, a linear-time FPT algorithm that (given the labels around v 0) computes the minimum number of label transitions around v 0 is presented. If the number of labels is unconstrained, then the problem of deciding whether the minimum number of label transitions is at most k is NP-complete.

Keywords

label transitions planar graph fixed-parameter tractable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butkovič, P., Cuninghame-Green, R.A.: On matrix powers in max-algebra. Linear Algebra Appl. 421, 370–381 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ-trees. J. Comput. Syst. Sci. 30, 54–76 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cuninghame-Green, R.: Minimax Algebra, vol. 166. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  4. 4.
    Decker, R.W., Glover, H.H., Huneke, J.P.: The genus of the 2-amalgamations of graphs. Journal of Graph Theory 5(1), 95–102 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Decker, R.W., Glover, H.H., Huneke, J.P.: Computing the genus of the 2-amalgamations of graphs. Combinatorica 5, 271–282 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gavalec, M.: Linear matrix period in max-plus algebra. Linear Algebra and its Applications 307(1-3), 167–182 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21, 549–568 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  9. 9.
    Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)zbMATHGoogle Scholar
  10. 10.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Univ. Press, Baltimore (2001)zbMATHGoogle Scholar
  11. 11.
    Mohar, B., Škoda, P.: Obstructions for xy-alternating embeddings of graphs in surfaces (in preparation) Google Scholar
  12. 12.
    Shih, W.K., Hsu, W.L.: A new planarity test. Theor. Comput. Sci. 223, 179–191 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bojan Mohar
    • 1
  • Petr Škoda
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations