Advertisement

Generating All Simple Convexly-Drawable Polar Symmetric 6-Venn Diagrams

  • Khalegh Mamakani
  • Wendy Myrvold
  • Frank Ruskey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)

Abstract

An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 n possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A Venn diagram is convexly-drawable if it can be drawn with all curves convex and it is simple if at most two curves intersect at any point. A Venn diagram is called polar symmetric if its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. We outline an algorithm that shows there are exactly 375 simple convexly drawable polar-symmetric 6-Venn diagrams.

Keywords

Venn diagram polar-symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bultena, B., Grünbaum, B., Ruskey, F.: Convex Drawings of Intersecting Families of Simple Closed Curves. In: 11th Canadian Conference on Computational Geometry, pp. 18–21 (1999)Google Scholar
  2. 2.
    Carroll, J.: Drawing Venn triangles. Technical Report HPL-2000-73, HP Labs (2000)Google Scholar
  3. 3.
    Edwards, A.W.F.: Seven-set Venn Diagrams with Rotational and Polar Symmetry. Combinatorics, Probability, and Computing 7, 149–152 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, T., Mamakani, K., Ruskey, F.: Symmetric Monotone Venn Diagrams with Seven Curves. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 331–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Grünbaum, B.: Venn Diagrams and Independent Families of Sets. Mathematics Magazine, 13–23 (January-February 1975)Google Scholar
  6. 6.
    Grünbaum, B.: Venn Diagrams I. Geombinatorics I(4), 5–12 (1992)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grünbaum, B.: Venn Diagrams II. Geombinatorics II(2), 25–32 (1992)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Griggs, J., Killian, C.E., Savage, C.D.: Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice. Electronic Journal of Combinatorics 11(1), #R2 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Henderson, D.W.: Venn diagrams for more than four classes. American Mathematical Monthly 70, 424–426 (1963)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Venn, J.: On the diagrammatic and mechanical representation of propositions and reasonsings. Philosophical Magazine and Journal of Science, Series 5 10(59) (1880)Google Scholar
  11. 11.
    Chilakamarri, K.B., Hamburger, P., Pippert, R.E.: Venn diagrams and planar graphs. Geometriae Dedicata 62, 73–91 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ruskey, F., Weston, M.: A survey of Venn diagrams. The Electronic Journal of Combinatorics (1997); Dynamic survey, Article DS5 (online) (revised 2001, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Khalegh Mamakani
    • 1
  • Wendy Myrvold
    • 1
  • Frank Ruskey
    • 1
  1. 1.Dept. of Computer ScienceUniversity of VictoriaCanada

Personalised recommendations