Advertisement

Kinetic Euclidean Minimum Spanning Tree in the Plane

  • Zahed Rahmati
  • Alireza Zarei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7056)

Abstract

This paper presents the first kinetic data structure (KDS) for maintenance of the Euclidean minimum spanning tree (EMST) on a set of n moving points in 2-dimensional space. We build a KDS of size O(n) in O(nlogn) preprocessing time by which their EMST is maintained efficiently during the motion. In terms of the KDS performance parameters, our KDS is responsive, local, and compact.

Keywords

computational geometry Euclidean minimum spanning tree kinetic data structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning. In: 39th IEEE Sympos Found Comput Sci, pp. 596–605 (1998)Google Scholar
  2. 2.
    Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)Google Scholar
  3. 3.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. Journal of Algorithms 31, 1–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: 13th Annual Symposium on Computational Geometry, pp. 344–351 (1997)Google Scholar
  5. 5.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Santa Clara (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boissonnat, J.-D., Teillaud, M.: On the randomized construction of the Delaunay. Theoretical Computer Science 112, 339–354 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, R.C., Lee, R.C.T.: An O(nlogn) minimal spanning tree algorithm for n points in the plane. BIT 26, 7–16 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eppstein, D.: Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discrete and Computational Geometry 13, 111–122 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fu, J.-J., Lee, R.C.T.: Minimum Spanning Trees of Moving Points in the Plane. IEEE Transactions on Computers 40, 113–118 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi Diagrams of Moving Points in the Plane. In: Proceedings of the 17th International Workshop, pp. 113–125 (1991)Google Scholar
  11. 11.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees of linearly moving points. Discrete and Computational Geometry 13, 161–176 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)CrossRefGoogle Scholar
  15. 15.
    Tarjan, R.E.: Data structures and network algorithms. Society for Industrial and Applied Mathematics (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zahed Rahmati
    • 1
  • Alireza Zarei
    • 1
  1. 1.Department of Mathematical SciencesSharif University of TechnologyTehranIran

Personalised recommendations