Skip to main content

VCSEL-Based Transceivers for Data Communications

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

The data communications (datacom) transceiver market has experienced tremendous growth over the last fifteen years due in large part to the use of vertical-cavity surface-emitting lasers (VCSELs) and multimode optical fibers. This chapter reviews the evolution of 850 nm laser-based datacom transceivers beginning with the early use of AlGaAs edge-emitters to the adoption of VCSELs where their unique attributes have enabled significant performance enhancements and cost reductions in transceiver designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.R. Aulet, D.W. Boerstler, G. DeMario, F.D. Ferraiolo, C.E. Hayward, C.D. Heath, A.L. Huffman, W.R. Kelly, G.W. Peterson, D.J. Stigliani Jr., IBM enterprise systems multimode fiber optic technology. IBM J. Res. Dev. 36(4), 553–576 (1992)

    Google Scholar 

  2. R.L. Soderstrom, T.R. Block., D.L. Karst, T. Lu, An optical data link using a CD laser. In High-Speed Fiber Networks and Channels, ed. by K. Annamalai. Proceedings of SPIE, vol. 1577 (1991), pp. 163–173

    Google Scholar 

  3. A.M.J. Koonen, Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise. IEEE J. Selected Areas in Commun. 4(9), 1515–1522 (1986)

    Google Scholar 

  4. Fibre channel physical and signaling interface (FC-PH), Rev 4.3, http://www.t11.org (1994)

  5. D.M. Kuchta, C.J. Mahon, Mode selective loss penalties in VCSEL optical fiber transmission links. IEEE Photon. Technol. Lett. 6(2), 288–290 (1994)

    Google Scholar 

  6. K.H. Hahn, M.R. Tan, Y.M. Houng, S.Y. Wang, Large area multitransverse-mode VCSELs for modal noise reduction in multimode fibre systems. Electron. Lett. 29(16), 1482–1483 (1993)

    Google Scholar 

  7. INF-8074i Specification for SFP (Small formfactor pluggable) transceiver, Rev 1.0, SFF Committee ftp://ftp.seagate.com/sff (May 2001)

  8. S. Baumgartner, L. Freitag, M. Paschal, D. Siljenberg, An integrated 1.25 Gb/s laser driver post amplifer IC. IEEE Custom Integrated Circuits Conference, Sect. 2.4, pp. 17–20 (1997)

    Google Scholar 

  9. H. Wu, J.A. Tierno, P. Pepeljugoski, J. Schaub, S. Gowda, J.A. Kash, A. Hajimiri, Integrated transversal equalizers in high-speed fiber-optic systems. IEEE J. Solid-State Circuits 38(12), 2131–2137 (2003)

    Google Scholar 

  10. D. McGhan, Electronic dispersion compensation, Optical Fiber Communication Conference OFC, 2006, tutorial OWK1 (Feb. 2006)

    Google Scholar 

  11. A. Ghiasi, M. Dudek, Benefits of EDC and linear receivers for short reach 40/100 GE. IEEE Commun. Mag. 46(2), S17–S21 (2008)

    Google Scholar 

  12. R.H. Johnson, D. Kuchta, 30 Gb/s directly modulated 850 nm datacom VCSELs, IEEE Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, CLEO/QELS. San Jose, CA, May 2008, paper CPDB2

    Google Scholar 

  13. S.A. Blokhin, J.A. Lott, A. Mutig, G. Fiol, N.N. Ledentsov, M.V. Maximov, A.M. Nadtochiy, V.A. Shchukin, D. Bimberg, Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gb/s. Electron. Lett. 45(10), 501–503 (2009)

    Google Scholar 

  14. Y.-C. Chang, C.S. Wang, L.A. Coldren, High-efficiency, high-speed VCSELs with 35 Gb/s error-free operation. Electron. Lett. 43, 1022–1023 (2007)

    Google Scholar 

  15. T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, M. Tsuji, High-speed \(1.1\,{\upmu}\hbox{m}\) range InGaAs VCSELs, Optical Fiber Communication Conference, OFC, 2008, paper OThS5 (Feb. 2008)

    Google Scholar 

  16. S.M. Park, H.-J. Yoo, 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications. IEEE J. Solid-State Circuits 39(1), 112–121 (2004)

    Google Scholar 

  17. C. Kromer, G. Sialm, T. Morf, M.L. Schmatz, F. Ellinger, D. Erni, H. Jäckel, A low-power 20-GHz 52-dB\(\Upomega\) transimpedance amplifier in 80-nm CMOS. IEEE J. Solid-State Circuits 39(6), 885–894 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth P. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, K.P., Schow, C.L. (2013). VCSEL-Based Transceivers for Data Communications. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics