Skip to main content

Long-Wavelength VCSELs with Buried Tunnel Junction

  • Chapter
  • First Online:
Book cover VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

Despite the earliest work on VCSELs in the late 1970s on InP-based materials, the further realization of VCSELs beyond 1.3 \(\upmu\hbox{m}\) emission wavelength has been significantly delayed for many years with respect to their short-wavelength counterparts on GaAs substrates. This chapter covers the specific challenges, solutions and application prospects of VCSELs in non-GaAs-based material systems which are suitable for achieving significantly extended wavelength ranges. By using highly advanced device concepts, since the late 1990s it became possible to overcome the fundamental technological drawbacks related with long-wavelength VCSELs such as inferior thermal properties and to realize lasers with remarkable device performance. In particular and with respect to huge application opportunities in optical communications, this chapter presents InP-based VCSELs with single-mode output powers of several milliwatts at room temperature and well beyond 1 mW at \(85^\circ\hbox{C},\) as well as modulation frequencies far above 10 GHz in conjunction with ultra-small power consumption. While the InP-based VCSEL technology is limited to maximum emission wavelengths around 2.3 \(\upmu\hbox{m},\) even longer emission up to the mid-infrared wavelength range can be achieved with VCSELs based on GaSb. With their inherent and, compared to other laser types, superior properties like enhanced tuning characteristics, long-wavelength VCSELs are regarded as key components for applications in optical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Iga, Surface emitting lasers. Electron. Commun. Jpn. Part 2 82, 483–493 (1999)

    Article  Google Scholar 

  2. F. Koyama, Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502–4513 (2006)

    Article  ADS  Google Scholar 

  3. R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, C. Lauer, M. Maute, M.-C. Amann, Long-wavelength InP-based VCSELs with buried tunnel junction: properties and applications. Proceedings of SPIE, vol. 5364 (2004), pp. 1–15

    Article  ADS  Google Scholar 

  4. S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, Chichester, 1992)

    Book  Google Scholar 

  5. S. Adachi, Lattice thermal resistivity of III-V compound alloys. J. Appl. Phys. 54, 1844–1848 (1983)

    Article  ADS  Google Scholar 

  6. G. Tuttle, J. Kavanaugh, S. McCalmont, (Al,Ga)Sb long-wavelength distributed Bragg reflectors. IEEE Photon. Technol. Lett. 5, 1376–1379 (1993)

    Article  ADS  Google Scholar 

  7. M.H. MacDougal, P.D. Dapkus, A.E. Bond, C.-K. Lin, J. Geske, Design and fabrication of VCSEL’s with \(\hbox{Al}_{\rm x}\hbox{O}_{\rm y}\)-GaAs DBR’s. IEEE J. Select. Topics Quantum Electron. 3, 905–915 (1997)

    Google Scholar 

  8. L. Legay, P. Petit, G.L.e. Roux, A. Kohl, I.F.L. Dias, M. Juhel, M. Quillec, Wet thermal oxidation of AlAsSb alloys lattice matched on InP. J. Appl. Phys. 81, 7600–7603 (1997)

    Article  ADS  Google Scholar 

  9. J.A. Lott, N.N. Ledentsov, V.M. Ustinov, Zh.I. Alferov, D. Bimberg, Continuous wave 1.3 \(\upmu\hbox{m}\) InAs-InGaAs quantum dot VCSELs on gaas substrates, in Conference on Lasers and Electro-Optics(CLEO). Technical Digest (2001), p. 137

    Google Scholar 

  10. G. Steinle, H. Riechert, A.Y. Egorov, Monolithic VCSEL with InGaAsN active region emitting at 1.28 \(\upmu\hbox{m}\) and cw output power exceeding 500 \(\upmu {\hbox{W}}\) at room temperature. Electron. Lett. 37, 93–95 (2001)

    Google Scholar 

  11. F. Quochi, J.E. Cunningham, M. Dinu, J. Shah, Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 \(\upmu\hbox{m}\). Electron. Lett. 36, 2075–2076 (2000)

    Google Scholar 

  12. E. Söderberg, J.S. Gustavsson, P. Modh, A. Larsson, Z. Zhang, J. Berggren, M. Hammar, High-temperature dynamics, high-speed modulation, and transmission experiments using 1.3-\(\upmu\hbox{m}\) InGaAs single-mode VCSELs. J. Lightwave Technol. 25, 2791–2798 (2007)

    Google Scholar 

  13. A. Black, A.R. Hawkins, N.M. Margalit, D.I. Babic Jr., A.L. Holmes, Y.-L. Chang, P. Abraham, J.E. Bowers, E.L. Hu, Wafer fusion: material issues and device results. IEEE J. Select. Topics Quantum Electron. 3, 943–951 (1997)

    Article  Google Scholar 

  14. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, E. Kapon, 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands, in Conference on Optical Fiber Communication (OFC). Technical Digest (2008), pp. 1–3

    Google Scholar 

  15. J. Boucart, C. Starck, F. Gaborit, A. Plais, N. Bouche, E. Derouin, L. Goldstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, J. Jaquet, 1-mW CW-RT monolithic VCSEL at 1.55 \(\upmu\hbox{m}{.}\) IEEE Photon. Technol. Lett. 11, 629–631 (1999)

    Google Scholar 

  16. S. Nakagawa, E.M. Hall, G. Almuneau, J.K. Kim, H. Kroemer, L.A. Coldren, 1.55-\(\upmu\hbox{m}\) InP-lattice-matched VCSELs operating at RT under CW, in 17th IEEE International Semiconductor Laser Conference, Monterey, USA (2000), pp. 151–152

    Google Scholar 

  17. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M.-C. Amann, Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phy. 39, 1727–1729 (2000)

    Article  ADS  Google Scholar 

  18. G.R. Hadley, Effective index model for vertical-cavity surface-emitting lasers. Opt. Lett. 20, 1483–1485 (1995)

    Article  ADS  Google Scholar 

  19. C.A. Burrus, B.I. Miller, Small-area double-heterostructure aluminium-gallium arsenide electroluminescent diode sources for optical-fibre transmission lines. Opt. Commun. 4, 307–309 (1971)

    Article  ADS  Google Scholar 

  20. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M.H. Hu, X.S. Liu, M.-J. Li, R. Bhat, C.E. Zah, Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD. IEEE J. Select. Topics Quantum Electron. 11, 990–998 (2005)

    Google Scholar 

  21. H. Wada, T. Kamijoh, Thermal conductivity of amorphous silicon. Jpn. J. Appl. Phys. 35, 648–650 (1996)

    Article  ADS  Google Scholar 

  22. A. Larsson, C. Carlsson, J. Gustavsson, Å. Haglund, P. Modh, J. Bengtsson, Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links. New J. Phys. 6 (2004)

    Google Scholar 

  23. S. Eitel, S.J. Fancey, H.P. Gauggel, K.H. Gulden, W. Bachtold, M.R. Taghizadeh, Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays. IEEE Photon. Technol. Lett. 12, 459–461 (2000)

    Google Scholar 

  24. F. Mederer, M. Grabherr, F. Eberhard, I. Ecker, R. Jäger, J. Joos, C. Jung, M. Kicherer, R. King, P. Schnitzer, H. Unold, D. Wiedenmann, K.J. Ebeling, High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects, in 50 Electronic Components Technology Conference. Technical Digest (2000), pp. 1242–1251

    Google Scholar 

  25. J.F. Seurin, C.L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J.D. Wynn, P. Pradhan, L.A. D’Asaro, High-power high-efficiency 2d VCSEL arrays. Photonics West Proc. SPIE 6908, (2008)

    Google Scholar 

  26. W. Hofmann, M. Görblich, M. Ortsiefer, G. Böhm, M.-C. Amann, Long-wavelength(\(\lambda = 1.55\,\upmu\hbox{m}\)) monolithic VCSEL array with \(>\)3 W cw output power. Electron. Lett. 43, 1025–1026 (2007)

    Google Scholar 

  27. W. Hofmann, E. Wong, M. Ortsiefer, M. Görblich, G. Böhm, M.-C. Amann, One and two-dimensional long-wavelength VCSEL arrays for wdm applications and optical interconnects, in 21st IEEE International Semiconductor Laser Conference, Sorrento, Italy (2008), pp.  165–166

    Google Scholar 

  28. C. Lin, M. Grau, O. Dier, M.-C. Amann, Low threshold room-temperature continuous-wave operation of 2.24 to 3.04 \(\upmu\hbox{m}\) GaInAsSb/AlGaAsSb quantum well lasers. Appl. Phys. Lett. 84, 5088–5090 (2004)

    Google Scholar 

  29. T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, Y. Kondo, 2.33-\(\upmu\hbox{m}\)-wavelength distributed feedback lasers with InAs–\(\hbox{In}_{0.53}\hbox{Ga}_{0.47}\) As multiple-quantum wells on InP substrates. IEEE Photonics Technol. Lett. 20,1045–1047 (2008)

    Google Scholar 

  30. G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 \(\upmu\hbox{m}.\) J. Cryst. Growth 301–302, 941–944 (2007)

    Google Scholar 

  31. M. Ortsiefer, J. Rosskopf, E. Rönneberg, Y. Xu, K. Maisberger, R. Shau, C. Neumeyr, W. Hofmann, G. Böhm, A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, Extended near-infrared wavelength VCSELs for optical sensing, in \({\it 21}{st}\) IEEE International Semiconductor Laser Conference, Sorrento, Italy (2008), pp. 167–168

    Google Scholar 

  32. M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, M.-C. Amann, Micro-mechanically tunable long wavelength vcsel with buried tunnel junction. Electron. Lett. 40, 430–431 (2004)

    Article  Google Scholar 

  33. B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, P. Meissner, Simultaneous spectroscopy of \(\hbox{NH}_3\) and CO using a 50 nm continuously tunable MEMS-VCSEL. IEEE Sensors J. 7, 1483–1489 (2007)

    Google Scholar 

  34. P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, M.-C. Amann, Modal properties of long-wavelength tunable mems-vcsels with curved mirrors: Comparison of experiment and modeling. IEEE J. Quantum Electron. 44, 391–399 (2008)

    Article  ADS  Google Scholar 

  35. A. Bachmann, K. Kashani-Shirazi, M.-C. Amann, GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to \(50^\circ\hbox{C}\), in \({\it 21}{st}\) IEEE International Semiconductor Laser Conference, Sorrento, Italy (2008), pp. 39–40

    Google Scholar 

  36. J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, M.-C. Amann, CO and \(\hbox{CH}_4\) sensing with single mode 2.3 \(\upmu\hbox{m}\) GaSb-based VCSEL, in Conference on Lasers and Electro-Optics (CLEO). Technical Digest (2009), p. 143

    Google Scholar 

  37. W. Hofmann, M. Ortsiefer, E. Rönneberg, C. Neumeyr, G. Böhm, M.-C. Amann, 1.3 \(\upmu\hbox{m}\) InGaAlAs/InP VCSEL for 10 G Ethernet, in \({\it 21}{st}\) IEEE International Semiconductor Laser Conference, Sorrento, Italy (2008), pp. 11–12

    Google Scholar 

  38. W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N.H. Zhu, M.-C. Amann, 1.55 \(\upmu\hbox{m}\) VCSEL arrays for high-bandwidth WDM-PONs. IEEE Photon. Technol. Lett. 20, 291–293 (2008)

    Google Scholar 

  39. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, W.W. Chow, 40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 \(\upmu\hbox{m}\) VCSELs. IEEE J. Select. Topics Quantum Electron. 13, 1200–1208 (2007)

    Google Scholar 

  40. M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, M.-C. Amann, High speed 1.3 mm VCSELs for 12.5 Gbit/s optical interconnects. Electron. Lett. 44, 974–975 (2008)

    Google Scholar 

  41. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 \(\upmu\hbox{m}\) vertical-cavity surface-emitting laser. Opt. Lett. 33, 1566–1568 (2008)

    Google Scholar 

  42. L.S. Rothman et al., The HITRAN 2004 molecular spectroscopic database. JQSRT 96, 139–204 (2005)

    Google Scholar 

  43. P.W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A 60, 1685–1705 (2004)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union via NEMIS (contract no. FP6-2005-IST-5-031845) and the German Federal Ministry of Education and Research via NOSE (contract no.13N8772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ortsiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortsiefer, M., Hofmann, W., Rosskopf, J., Amann, MC. (2013). Long-Wavelength VCSELs with Buried Tunnel Junction. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics