Advertisement

Abstract

It is proved that a circle of diameter d can hold a cube of unit edge if and only if \(\sqrt2\le d< 1.53477...\). Similarly, it can be proved that a circle of diameter d can hold a regular octahedron of unit edge if and only if 1 ≤ d < 1.1066....

Keywords

holding circle cube octahedron 

Mathematical Subject Classification

52A15 52B10 52C99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, I., Maehara, H., Tokushige, N.: Tetrahedra passing through a triangular hole (submitted)Google Scholar
  2. 2.
    Itoh, J., Tanoue, Y., Zamfirescu, T.: Tetrahedra passing through a circular or square hole. Rend. Circ. Mat. Palermo (2) suppl. No. 77, 349–354 (2006)Google Scholar
  3. 3.
    Itoh, J., Zamfirescu, T.: Simplices passing through a hole. J. Geom. 83, 65–70 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Maehara, H.: To hold a regular pyramid by a circle (submitted)Google Scholar
  5. 5.
    Maehara, H., Tokushige, N.: Regular simplices passing through holes. Geometrae Dedicata 145, 19–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tanoue, Y.: Regular triangular pyramids held by a circle. Journal of Geometry 94, 151–157 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zamfirescu, T.: How to hold a convex body. Geometriae Dedicata 54, 313–316 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hiroshi Maehara
    • 1
  1. 1.RIEDTokai UniversityShibuya-kuJapan

Personalised recommendations