Advertisement

A Property about the Convex Lattice Set in ℤ2

  • Junfeng Luo
  • Lin Si
  • Zitong Wang
  • Lu Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7033)

Abstract

In this paper we study the distribution of the cardinality of the intersection of a centrally symmetric convex lattice set with lines perpendicular to x − axis or y − axis. For some centrally symmetric convex lattice set, we prove that neither the section counter function f x nor f y can be strictly increasing functions.

Keywords

Convex Hull Discrete Geometry Counter Function Integer Lattice Convex Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Gardner, R., Gronchi, P.: A Brunn-Minkowski inequality for the integer lattice. Trans. Amer. Math. Soc. 353, 3995–4024 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gardner, R., Gronchi, P., Zong, C.: Sums, Projections, and Sections of Lattice Sets, and the Discrete Covariogram. Discrete Comput. Geom. 34, 391–409 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gruber, P.M.: Convex and Discrete Geometry. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  5. 5.
    Zhou, J.: On the Projections of Convex Lattice Sets. Acta Mathematica Sinica, English Series 26, 1969–1980 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Junfeng Luo
    • 1
  • Lin Si
    • 1
  • Zitong Wang
    • 1
  • Lu Qu
    • 1
  1. 1.College of ScienceBeijing Forestry UniversityBeijingP.R. China

Personalised recommendations