Continuous Flattening of Platonic Polyhedra

  • Jin-ichi Itoh
  • Chie Nara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7033)


We prove that each Platonic polyhedron P can be folded into a flat multilayered face of P by a continuous folding process for polyhedra.


Equilateral Triangle Piecewise Linear Mapping Regular Tetrahedron Polyhedral Surface Regular Pentagon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy, A.: Sur les polygons et les polyedres. J. Ecole Polytech. 9, 87 (1813)Google Scholar
  2. 2.
    Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Inst. Hautes Etudes Sci. Publ. Math. 47, 333–338 (1978)CrossRefzbMATHGoogle Scholar
  3. 3.
    Connelly, R.: The rigidity of polyhedral surface. Math. Mag. 52, 275–283 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demaine, E.D., O’Rourke, J.: Geometric folding algorithms, Laincages, Origami, Polyhedra. Cambridge U. P. (2007)Google Scholar
  5. 5.
    Isokawa, Y.: Mystery of Origami ‘Balloon’. Bull. Educ. Research and Development Fac. Ed. Kagoshima Univ. Special Issue 5, 19–28 (2009)Google Scholar
  6. 6.
    Sabitov, I.: The volume of polyhedron as a function of its metric. Fundam. Prikl. Mat. 2(4), 1235–1246 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Sabitov, I.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom. 20, 405–425 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jin-ichi Itoh
    • 1
  • Chie Nara
    • 2
  1. 1.Faculty of EducationKumamoto UniversityJapan
  2. 2.Liberal Arts Education CenterAso Campus, Tokai UniversityAsoJapan

Personalised recommendations