Advertisement

Fibrinolytic Bacterial Enzymes with Thrombolytic Activity

  • Essam KotbEmail author
Chapter
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)

Abstract

This book describes the fibrinolytic enzymes of microbial origin that are able to dissolve endogenous thrombi in vivo. The fibrinolytic enzyme streptokinase for example, is produced by β-hemolytic streptococci and exerts its enzyme action indirectly by activating plasminogen. On the other hand, staphylokinase is produced by Staphylococcus aureus by stoichiometric complexation with plasmin(ogen) that activates other plasminogen molecules. Serrapeptase is a different fibrinolytic enzyme produced by enterobacterium Serratia sp. E-15 with multiple functions including fibrin degradation. In addition, nattokinase is a very promising enzyme produced by Bacillus natto in fermented soybean in the Japanese diet providing them with the lowest rate of thrombosis disorders all over the world. For each fibrinolytic enzyme there is a special focus on the enzyme structure and mechanism of action. In Sect. 6 the methods used for assessment of clot lysis in vitro are discussed: Fibrin plate methods, streptokinase lysis methods, nephelometric methods, dilute blood clot lysis time, euglobulin lysis time, esterolytic, and fluorimetric assays. Finally, hemostasis screening tests are discussed, such as CBC, PT, PTT, TT, fibrinogen, D-dimer, and BT assays. They should be done regularly to check the physiological and fibrinolytic activity of blood to reduce the onset of endogenous thrombi.

Keywords

Fibrinolytic enzymes Microorganisms Thrombosis Hemostasis Blood clots Streptokinase Staphylokinase Serrapeptase Nattokinase Assays 

References

  1. Abdel-Fattah AF, Ismail AS (1984) Purification and some properties of pure Cochliobolus lunatus fibrinolytic enzyme. Biotechnol Bioeng 26(5):407–411PubMedCrossRefGoogle Scholar
  2. Abloundi FB, Hagan JJ (1957) Comparison of certain properties of human plasminogen and proactivator. Proc Soc Exp Biol 95:195–200Google Scholar
  3. Adams DS, Griffin LA, Nachajko WR, Reddy VB, Wei CM (1991) A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem 266:8476–8482PubMedGoogle Scholar
  4. Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Jellouli K, Nasri M (2009) Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26 characterization and statistical media optimization. Can J Microbiol 55(9):1049–1061PubMedCrossRefGoogle Scholar
  5. Ahn MY, Hahn BS, Ryu KS (2003) Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thromb Res 112:339–347PubMedCrossRefGoogle Scholar
  6. Alkjaersig N, Fletcher AP, Sherry S (1958) The activation of human plasminogen. II. A kinetic study of activation with trypsin, urokinase, and streptokinase. J Biol Chem 233:86–90PubMedGoogle Scholar
  7. Ambrus JL, Weber FJ, Ambrus CM (1979) Mechanism of action of fibrinolytic enzymes in vivo. J Med 10:99–119PubMedGoogle Scholar
  8. Andreas EM (1990) Affinity chromatographic purification of streptokinase with monoclonal antibodies. Allerg Immunol (Leipzig) 36:277–285Google Scholar
  9. Ashipala OK, He Q (2008) Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresour Technol 99(10):4112–4119PubMedCrossRefGoogle Scholar
  10. Astrup T, Mullertz S (1952) The fibrin plate method for estimating fibrinolytic activity. Arch Biochem 40:346PubMedCrossRefGoogle Scholar
  11. Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F (2002) Unfolding and aggregation during the thermal denaturation of streptokinase. Eur J Biochem 269:4121–4133PubMedCrossRefGoogle Scholar
  12. Baewald G, Mayer G, Heikel R, Volzke KD, Roehlig R, Decker KL et al (1975) Fermentative production of Streptococcus metabolites, especially streptokinase. German Patent DD 111096Google Scholar
  13. Barett AJ (1995) Proteolytic enzymes: aspartic and metallopeptidases. Methods Enzymol 248:183CrossRefGoogle Scholar
  14. Barlow GH, Marder VJ (1980) Plasma urokinase levels measured by chromogenic assay after infusions of tissue culture or urinary source material. Throm Res 18:431–437CrossRefGoogle Scholar
  15. Barta G (1966) Dyed fibrin plate assay of fibrinolysis. Can J Physiol Pharmacol 44(2):233–240PubMedCrossRefGoogle Scholar
  16. Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522CrossRefGoogle Scholar
  17. Bayoudh A, Gharsallah N, Chamkha M, Dhouib A, Ammar S, Nasri M (2000) Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MNI. J Ind Microbiol Biotechnol 24:291–295CrossRefGoogle Scholar
  18. Beldarrain A, Lopez-Lacomba JL, Kutyshenko VP, Serrano R, Cortijo M (2001) Multidomain structure of a recombinant streptokinase: a differential scanning calorimetry study. J Protein Chem 20:9–17PubMedCrossRefGoogle Scholar
  19. Bell PH, Dziobkowski CT, Englert ME (1974) A sensitive fluorometric assay for plasminogen, plasmin and streptokinase. Anal Biochem 61:200–208PubMedCrossRefGoogle Scholar
  20. Bernheimer AW, Gillman W, Hottle GA, Pappenheimer AM (1942) An improved medium for the cultivation of hemolytic streptococcus. J Bacteriol 43:495–498PubMedGoogle Scholar
  21. Bicford AF, Sokolow M (1961) Fibinolysis as related to the urea solubiity of fibri. Thronbos Diathes haemorrh (Stuttg) 5:480Google Scholar
  22. Billroth T (1874) Coccobacteria septica, Georg Reimer, Berlin, p 240Google Scholar
  23. Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7:728–735PubMedCrossRefGoogle Scholar
  24. Blann AD, Landray MJ, Lip GY (2002) An overview of antithrombotic therapy. Br Med J 325:762–765CrossRefGoogle Scholar
  25. Blix S (1962) The effectiveness of activators in clot lysis, with special reference to fibrinolytic therapy: a new method for determination of preformed clot lysis. Acta Med Scand 172:386Google Scholar
  26. Bode C, Runge M, Smalling RW (1996) The future of thrombolysis in the treatment of acute myocardial infarction. Eur Heart J 17:55–60PubMedGoogle Scholar
  27. Boxrud PD, Bock PE (2000) Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions. Biochemistry 39:13974–13981PubMedCrossRefGoogle Scholar
  28. Boxrud PD, Verhamme IMA, Fay WP, Bock PE (2001) Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J Biol Chem 276:26084–26089PubMedCrossRefGoogle Scholar
  29. Brockway WJ, Castellino FJ (1974) A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry 13:2063–2070PubMedCrossRefGoogle Scholar
  30. Buckell M (1958) The effect of citrate on euglobulin methods of estimating fibrinolytic activity. J Clin Pathol 11:403PubMedCrossRefGoogle Scholar
  31. Caramelli P, Mutarelli EG, Caramelli B, Tranchesi B, Pileggi F, Scaff M (1992) Neurological complications after thrombolytic treatment for acute myocardial infarction: emphasis on unprecedented manifestations. Acta Neurol Scand 85(5):331–333PubMedCrossRefGoogle Scholar
  32. Cartwright T (1974) The plasminogen activator of vampire bat saliva. Blood 43:317–326PubMedGoogle Scholar
  33. Castellino FJ (1981) Recent advances in the chemistry of the fibrinolytic system. Chem Rev 81:431–446CrossRefGoogle Scholar
  34. Castellino FJ, Sodetz JM, Brockway WJ, Siefring GE (1976) Streptokinase. Methods Enzymol 45:244–257PubMedCrossRefGoogle Scholar
  35. Chakrabarti R, Fearnley GR (1962) The fibrinolytic potential as a simple measure of spontaneous fibrinolysis. J Clin Pathol 15:228PubMedCrossRefGoogle Scholar
  36. Chang CT, Fan MH, Kuo FC, Sung HY (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48(8):3210–3216PubMedCrossRefGoogle Scholar
  37. Chiang CJ, Chen HC, Chao Y, Tzen JTC (2005) Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J Agric Food Chem 53(12):4799–4804PubMedCrossRefGoogle Scholar
  38. Chisti Y (1998a) Biosafety. In: Subramanian G (ed) Bioseparation and bioprocessing: a handbook, vol 2. Wiley-VCH, New York, pp 379–415Google Scholar
  39. Chisti Y (1998b) Strategies in downstream processing. In: Subramanian G (ed) Bioseparation and bioprocessing: a handbook, vol 2. Wiley-VCH, New York, pp 3–30Google Scholar
  40. Chitte RR, Dey S (2000) Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol 31(6):405–410PubMedCrossRefGoogle Scholar
  41. Chitte RR, Dey S (2002) Production of a fibrinolytic enzyme by thermophilic Streptomyces species. World J Microbiol Biotechnol 18(4):289–294CrossRefGoogle Scholar
  42. Choi HS, Sa YS (2001) Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci Biotechnol Biochem 65:781–786PubMedCrossRefGoogle Scholar
  43. Choi HS, Shin PH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90(4):674–679CrossRefGoogle Scholar
  44. Choi NS, Chang KT, Jae Maeng P, Kim SH (2004) Cloning, expression, and fibrin(ogen)olytic properties of a subtilisin DJ- 4 gene from Bacillus sp. DJ-4. FEMS Microbiol Lett 236(2):325–331PubMedCrossRefGoogle Scholar
  45. Choi NS, Yoo KH, Hahm JH, Yoon KS, Chang KT, Hyun BH, Maeng PJ, Kim SH (2005) Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: produced by Bacillus sp. DJ-2 from Doen-Jang. J Microbiol Biotechnol 15(1):72–79Google Scholar
  46. Christensen LR (1945) Streptococcal fibrinolysis: a proteolytic reaction due to serum enzyme activated by streptococcal fibrinolysin. J Gen Physiol 28:363–383PubMedCrossRefGoogle Scholar
  47. Christensen LR (1949) Methods for measuring the activity of components of the streptococcal fibrinolytic system and Streptococcal desoxyribonuclease. J Clin Invest 28:163–172CrossRefGoogle Scholar
  48. Coffey JA, Jennings KR, Dalton H (2001) New antigenic regions of streptokinase are identified by affinity-directed mass spectrometry. Eur J Biochem 268:5215–5221PubMedCrossRefGoogle Scholar
  49. Collen D (1998a) Engineered staphylokinase variants with reduced immunogenicity. Fibrinol Proteol 12(Suppl 2):59–65CrossRefGoogle Scholar
  50. Collen D (1998b) Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med 4:279–284PubMedCrossRefGoogle Scholar
  51. Collen D, Van de Werf F (1993) Coronary thrombolysis with recombinant staphylokinase in patients with evolving myocardial infarction. Circulation 87:1850–1853PubMedGoogle Scholar
  52. Collen D, Lijnen HR (1994) Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84(3):680–686PubMedGoogle Scholar
  53. Collen D, Lijnen HR (2004) Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2(4):541–546PubMedCrossRefGoogle Scholar
  54. Collen D, DeCock F, Vanlinthout I, Declerck PJ, Lijnen HR, Stassen JM (1992) Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis 6:232–242CrossRefGoogle Scholar
  55. Conejero-Lara K, Parrado J, Azuaga AI, Smith RAG, Ponting CP, Dobson CM (1996) Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance. Protein Sci 5:2583–2591PubMedCrossRefGoogle Scholar
  56. Cui L, Dong MS, Chen XH, Jiang M, Lv X, Yan G (2008) A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol 24:483–489CrossRefGoogle Scholar
  57. Davie EW, Neurath H (1953) Identification of the peptide split from trypsinogen during autocatalytic activation. Biochim Biophys Acta 11:442PubMedCrossRefGoogle Scholar
  58. Davis HC, Karush F, Rudd JH (1965) Effect of amino acids on steady-state growth of a group A hemolytic streptococcus. J Bacteriol 89:421–427Google Scholar
  59. De Renzo EC, Siiteri PK, Hutchings BL, Bell PH (1967) Preparation and certain properties of highly purified streptokinase. J Biol Chem 242:533–542PubMedGoogle Scholar
  60. Deepak V, Kalishwaralal K, Ramkumarpandian S, Babu V, Senthilkumar SR, Sangiliyandi G (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Biores Technol 99:8170–8174CrossRefGoogle Scholar
  61. Dixon M, Webb EC (1964) Enzymes, 2nd edn. Academic, New YorkGoogle Scholar
  62. Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48(8):1194–1197PubMedGoogle Scholar
  63. Egorov NS, Kochetov GA, Khaidarova NV (1976) Isolation and properties of the fibrinolytic enzyme from the Actinomyces thermovulgaris cultural broth. Mikrobiologiia 45:455–459PubMedGoogle Scholar
  64. Egorov NS, Prianishnikova NI, Al-Nuri MA, Aslanian RR (1985) Streptomyces spheroides M8–2 strain—a producer of extracellular proteolytic enzyme possessing fibrinolytic and thrombolytic action. Naucn Dokl Vyss Sk Biol Nauki 1:77–81Google Scholar
  65. Einarsson M, Skoog B, Forsberg B, Einarsson R (1979) Characterization of highly purified native streptokinase and altered streptokinase after alkaline treatment. Biochim Biophys Acta 568:19–29PubMedGoogle Scholar
  66. Eisenberg PR, Jaffe AS, Stump DC, Collen D, Bovill EG (1990) Validity of enzyme-linked immunosorbent assays of cross-linked fibrin degradation products as a measure of clot lysis. Circulation 82:1159–1168PubMedCrossRefGoogle Scholar
  67. El-Aassar SA (1995) Production and properties enzyme in solid state cultures of Fusarium pallidoroseum. Biotechnol Lett 17(9):943–948CrossRefGoogle Scholar
  68. El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33(1):26–30PubMedCrossRefGoogle Scholar
  69. Ellis RP, Armstrong CH (1971) Production of capsules, streptokinase, and strepodonase by streptococcus group E. Am J Vet Res 32:349–356PubMedGoogle Scholar
  70. Esch PM, Gerngross H, Fabian A (1989) Reduction of postoperative swelling: objective measurement of swelling of the upper ankle joint in treatment with serrapeptase-a prospective study. Fortschr Med 107:67–68,71–72Google Scholar
  71. Estrada MP, Hernandez L, Perez A, Rodriguez P, Serrano R, Rubier AR et al (1992) High-level expression of streptokinase in Escherichia coli. Biotechnology 10:1138–1142PubMedCrossRefGoogle Scholar
  72. Fearnley GR, Balmforth G, Fearnley E (1957) Evidence of a diurnal fibrinolytic rhythm; with a simple method of measuring natural fibrinolysis. Clin Sci 16:645PubMedGoogle Scholar
  73. Feldman LJ (1974) Streptokinase manufacture (in German). German Patent DE 2354019Google Scholar
  74. Fitzmaurice DA, Blann AD, Lip GY (2002) Bleeding risks of antithrombotic therapy. Br Med J 325:828–831CrossRefGoogle Scholar
  75. Flute PT (1960) In: Proceedings of 7th congress European Society of Haematology part II, London, p 894Google Scholar
  76. Fossum S, Hoem NO (1996) Urokinase and non-urokinase fibrinolytic activity in protease-inhibitor-deprived plasma, assayed by a fibrin micro-plate method. Immuno Pharmacol 32:119–121CrossRefGoogle Scholar
  77. Fu L, Li RP, Li J, Zhang SM, Zhang YH, Zhao XX, Yang ZX (1997) Study on the fibrinolytic enzyme of Bacillus subtilis: selection of liquid fermentation condition. Chin Prog Biotechnol 17(3):31–33Google Scholar
  78. Fujita M, Hong K, Ito Y (1995a) Transport of nattokinase across the rat intestinal tract. Biol Pharm Bull 18(9):1194–1196PubMedCrossRefGoogle Scholar
  79. Fujita M, Hong K, Ito Y, Fujii R, Kariya K, Nishimuro S (1995b) Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull 18(10):1387–1391PubMedCrossRefGoogle Scholar
  80. Fujita M, Ito Y, Hong K, Nishimuro S (1995c) Characterization of nattokinase-degraded products from human fibrinogen or crosslinked fibrin. Fibrinolysis 9(3):157–164CrossRefGoogle Scholar
  81. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197(3):1340–1347PubMedCrossRefGoogle Scholar
  82. Galler LI (2000) Streptokinase derivatives with high affinity for activated platelets and methods of their production and use in thrombolytic therapy. US Patent 6087332 Google Scholar
  83. Gallimore MJ (1967) Effect of diluents on blood clot lysis. J Clin Pathol 20:234PubMedCrossRefGoogle Scholar
  84. Gardell SJ, Duong LT, Diehl RE, York JD, Hare TR, Register RB, Jacobs JJ, Dixon RA, Friedman PA (1989) Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 264:17947–17952PubMedGoogle Scholar
  85. Gase K, Ellinger T, Malke H (1995) Complex transcriptional control of the streptokinase gene of Streptococcus equisimilis H46A. Mol Gen Genet 247:749–758PubMedCrossRefGoogle Scholar
  86. Gidron E, Margalit R, Shalitin Y (1978) A rapid screening test for reduced fibrinolytic activity of plasma: streptokinase activated lysis time. J Clin Pathol 31:54–57PubMedCrossRefGoogle Scholar
  87. Goldberg AR (1974) Increased protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell 2:95–102PubMedCrossRefGoogle Scholar
  88. Goldhaber SZ, Bounameaux H (2001) Thrombolytic therapy in pulmonary embolism. Semin Vasc Med 1(2):213–220PubMedCrossRefGoogle Scholar
  89. Govind NS, Mehta B, Sharma M, Modi VV (1981) Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20:2483–2485CrossRefGoogle Scholar
  90. Grafe S, Ellinger T, Malke H (1996) Structural dissection and functional analysis of the complex promoter of the streptokinase gene from Streptococcus equisimilis H46A. Med Microbiol Immun 185:11–17CrossRefGoogle Scholar
  91. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline protease: molecular approaches and industrial application. Appl Microbial Biotechnol 59:15–32CrossRefGoogle Scholar
  92. Hartley BS (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72PubMedCrossRefGoogle Scholar
  93. Haverkate F, Bradman P (1975) Progress in chemical fibrinolysis and thrombolysis, vol 1. Raven, New York, p 151Google Scholar
  94. Hawkey CM, Stafford JL (1964) A standard clot method for the assay of plasminogen activators, anti-activators, and plasmin. J Clin Pathol 17:175PubMedCrossRefGoogle Scholar
  95. Health Canada (2000) Cardiovascular disease deaths in Canada. www.hcsc.gc.ca/hpb/lcdc/bcrdd/cardio/cvcpim_e.html.
  96. Healy V, O’Connell J, McCarthy TV, Doonan S (1999) The lysinespecifc proteinase from Armillaria mellea is a member of a novel class of metalloendopeptidase located in basidiomycetes. Biochem Biophys Res Commun 262:60–63PubMedCrossRefGoogle Scholar
  97. Hernandez-Pinzon I, Millan F, Bautista J (1997) Streptokinase recovery by cross-flow microfiltration: study of enzyme denaturation. Biosci Biotechnol Biochem 61:1240–1243PubMedCrossRefGoogle Scholar
  98. Holmstrom B (1965) Streptokinase assay on large agar diffusion plates. Acta Chem Scand 19:1549–1554PubMedCrossRefGoogle Scholar
  99. Homma K, Wakana N, Suzuki Y, Nukui M, Daimatsu T, Tanaka E, Tanaka K, Koga Y, Nakajima Y, Nakazawa H (2006) Treatment of natto, a fermented soybean preparation, to prevent excessive plasma vitamin K concentrations in patients taking warfarin. J Nutr Sci Vitaminol 52(5):297–301PubMedCrossRefGoogle Scholar
  100. Hougie C (1990) Partial thromboplastin time and activated partial thromboplastin time tests: one stage prothrombin time. In: Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds) Hematology, 4th edn. McGraw-Hill, New York, pp 1766–1770Google Scholar
  101. Howell M (1964) A method for assessing clot lysis. J Clin Pathol 17:310PubMedCrossRefGoogle Scholar
  102. Hrženjak T, Popović M, Božić T, Grdiša M, Kobrehel Đ, Tiška-Rudman LJ (1998) Fibrinonolytic and anticoagulative activities from the earthworm Eisenia foetida. Comp Biochem Physiol. 119B:825–832Google Scholar
  103. Huang TT, Malke H, Ferretti JJ (1989) Heterogeneity of the streptokinase gene in group A streptococci. Infect Immun 57:502–506PubMedGoogle Scholar
  104. Hummel BCW, Schor JM, Buck FF, Boggiano E, DeRenzo EC (1965) Quantitative enzymic assay of human plasminogen and plasmin with azocasein as substrate. Anal Biochem 11:532–547CrossRefGoogle Scholar
  105. Hwang CM, Kim DI, Kim JE, Huh SH, Min BG, Park JH, Han JS, Lee BB, Kim YI, Ryu ES, Kim JW (2002) In vivo evaluation of lumbrokinase, a fibrinolytic enzyme extracted from Lumbricus rubellus, in a prosthetic vascular graft. J Cardiovasc Surg 43:891–894Google Scholar
  106. Hyun HH, Lee YB, Song KH, Jeon JY, Lee HH (1997) Strain improvement for enhanced production of streptokinase and streptodornase in Streptococcus sp. J Microbiol Biotechnol 7:101–106Google Scholar
  107. Ikemura H, Inouye M (1988) In vitro processing of pro-subtilisin in Escherichia coli. J Biol Chem 263:12959–12963PubMedGoogle Scholar
  108. International Union of Biochemistry, Molecular Biology (1992) Enzyme nomenclature. Academic, Orlando FlaGoogle Scholar
  109. Ismail A-MS (1981) Biochemical studies on proteolytic enzymes. Ph.D. thesis faculty of science, Al-Azhar University, Naser, EgyptGoogle Scholar
  110. Ismail A-MS, Emam SAS, El-Shayeb NMA (2004) Production, properties and in vitro application of novel fibrinolytic enzyme by Bacillus macerans 3185. Egypt J Biotechnol 17:454–465Google Scholar
  111. Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21:6620–6625PubMedCrossRefGoogle Scholar
  112. Jeon OH, Moon WJ, Kim DS (1995) An anticoagulant fibrinolytic protease from Lumbricus rubellus. J Biochem Mol Biol 28:138–142Google Scholar
  113. Jeong YK, Park JU, Baek H, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17:89–92CrossRefGoogle Scholar
  114. Jeong YK, Kim JH, Gal SW, Kim JE, Park SS, Chung KT, Kim YH, Kim BW, Joo WH (2004) Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis Strain A1. World J Microbiol Biotechnol 20:711–717CrossRefGoogle Scholar
  115. Jespersen J, Astrup T (1983) A study of the fibrin plate assay of fibrinolytic agents. Optimal conditions, reproducibility and precision. Haemost 13:301–315Google Scholar
  116. Jespers L, Vanwetswinkel S, Lijnen HR, Van Herzeele N, Collen D, De Maeyer M (1998) Interface scanning and 3D model of the staphylokinase: plasmin activator complex. Fibrinol Proteol 12:4Google Scholar
  117. Jespers L, Vanwetswinkel S, Lijnen HR, Van Herzeele N, Van Hoef B, Demarsin E, Collen D, De Maeyer L (1999) Structural and functional basis of plasminogen activation by staphylokinase. Thromb Haemost 81:479–485PubMedGoogle Scholar
  118. Johnsen LB, Poulsen K, Kilian M, Petersen TE (1999) Purification and cloning of a streptokinase from Streptococcus uberis. Infect Immun 67(3):1072–1078PubMedGoogle Scholar
  119. Johnsen LB, Rasmussen LK, Petersen TE, Etzerodt M, Fedosov SN (2000) Kinetic and structural characterization of a two-domain streptokinase: dissection of domain functionality. Biochemistry 39:6440–6448PubMedCrossRefGoogle Scholar
  120. Kalisz HK (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65PubMedGoogle Scholar
  121. Kaneki M, Hedges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y, Mizuni Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orino H (2001) Japanese feremented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17:315–321PubMedCrossRefGoogle Scholar
  122. Kase CS, Pessin MS, Zivin JA, Del Zoppo GJ, Furlan AJ, Buckley JW, Littlejohn JK (1992) Intracranial hemorrhage after coronary thrombolysis with tissue plasminogen activator. Am J Med 92(4):384–390PubMedCrossRefGoogle Scholar
  123. Kazmi KA, Iqbal MP, Rahbar A, Mehboobali N (2002) Anti-streptokinase titers and response to streptokinase treatment in Pakistani patients. Int J Cardiol 82(3):247–251PubMedCrossRefGoogle Scholar
  124. Kessner A, Troll W (1976) Fluorometric microassay of plasminogen activators. Arch Biochem Biophys 176:411–416PubMedCrossRefGoogle Scholar
  125. Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC (2005) Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr Purif 39:1–7PubMedCrossRefGoogle Scholar
  126. Kim JH, Kim YS (1998) Purification and characterization of fibrinolytic enzyme from Armillaria mellea. Kor J Mycol 26:583–588Google Scholar
  127. Kim JH, Kim YS (1999) A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci Biotechnol Biochem 63:2130–2136PubMedCrossRefGoogle Scholar
  128. Kim SH, Choi NS (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci Biotechnol Biochem 64:1722–1725PubMedCrossRefGoogle Scholar
  129. Kim W, Choi K, Kim Y (1996a) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11–4 screened from Chungkook-Jang. Appl Environ Microbiol 62:2482–2488PubMedGoogle Scholar
  130. Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996b) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11–4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):1488–2482Google Scholar
  131. Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS (1997) Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J Ferment Bioeng 84(4):307–312Google Scholar
  132. Kim DM, Lee SJ, Kim IC, Kim ST, Byun SM (2000) Asp41–His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb Resour 99:93–98CrossRefGoogle Scholar
  133. Klein G, Kullich W (2000) Short-term treatment of painful osteoarthritis of the knee with oral enzymes: a randomized, double-blind study versus diclofenac. Chem Drug Invest 19(1):15–23Google Scholar
  134. Kline DL (1971) Thrombosis and bleeding disorders. Academic, NY, p 358Google Scholar
  135. Kline DI, Fishman JB (1961) Improved procedure for the isolation of human plasminogen. J Biol Chem 236:3232–3234PubMedGoogle Scholar
  136. Ko JH, Park DK, Kim IC, Lee SH, Byun SM (1995) High-level expression and secretion of streptokinase in Escherichia coli. Biotechnol Lett 17:1019–1024CrossRefGoogle Scholar
  137. Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol 137:65–74PubMedCrossRefGoogle Scholar
  138. Koide A, Suzuki S, Kobayashi S (1982) Preparation of polyethylene glycol-modified streptokinase with disappearance of binding ability towards antiserum and retention of activity. FEBS Lett 143:73–76PubMedCrossRefGoogle Scholar
  139. Kulisek ES, Holm SE, Johnston KH (1989) A chromogenic assay for the detection of plasmin generated by plasminogen activator immobilized on nitrocellulose using a para-nitroanilide synthetic peptide substrate. Med Anal Biochem 177:78–84CrossRefGoogle Scholar
  140. Kulseth MA, Helgeland LA (1993) Highly sensitive chromogenic microplate assay for quantification of rat and human plasminógen. Anal Biochem 210:314–317PubMedCrossRefGoogle Scholar
  141. Kumada K, Onga T, Hoshino H (1994) The effect of natto possessing a high fibrinolytic activity in human plasma. Igaku to Seibutsugaku 128(3):117–119Google Scholar
  142. Lai YP, Huang J, Wang LF, Li J, Wu ZR (2004) A new approach to random mutagenesis in vitro. Biotechnol Bioeng 86(6):622–627PubMedCrossRefGoogle Scholar
  143. Laki K, Lorand L (1948) On the solubility of fibrin clots. Science 108:280PubMedCrossRefGoogle Scholar
  144. Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57:571–595PubMedCrossRefGoogle Scholar
  145. Lassen M (1952) Heat denaturation of plasminogen in the fibrin plate method. Acta physiol.scand 27:371–376Google Scholar
  146. Lassen N (1953) Heat denaturation of plasminogen in the fibrin plate method. Acta Physiol Scand 27:371–376PubMedCrossRefGoogle Scholar
  147. Lassen M (1958) The estimation of fibrinolytic components by means of the lysis time method. Scand J Clin Lab Invest 10:384–389PubMedCrossRefGoogle Scholar
  148. Lee SH, Jeong ST, Kim IC, Byun SM (1997a) Identification of the functional importance of valine-19 residue in streptokinase by N-terminal deletion and site directed mutagenesis. Biochem Mol Biol Int 41:199–207PubMedGoogle Scholar
  149. Lee SH, Kim IC, Bae KH, Byun SM (1997b) Enhanced production and secretion of streptokinase into extracellular medium in Escherichia coli by removal of 13 N-terminal amino acids. Biotechnol Lett 19:151–154CrossRefGoogle Scholar
  150. Lee SK, Bae DH, Kwon TJ, Lee SB, Lee HH, Park JH, Heo S, Johnson MG (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J Microbiol Biotechnol 11(5):845–852Google Scholar
  151. Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, Chun HS, Yoo JC, Choi HS, Kim MK, Kim SJ (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43(1):10–17PubMedCrossRefGoogle Scholar
  152. Lee JS, Bai HS, Park SS (2006) Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella raxinea. J Microbiol Biotechnol 16:264–271Google Scholar
  153. Lee KC, Shin JS, Kim BS, Cho H, Kim SY, Lee EB (2007) Antithrombotic effects by oral administration of novel proteinase fraction from earthworm Eisenia andrei on venous thrombosis model in rats. Arch Pharm Res 30(4):475–480PubMedCrossRefGoogle Scholar
  154. Lehman CM, Wilson LW, Rodgers GM (2004) Analytic validation and clinical evaluation of the STA LIATEST immunoturbidimetric D-Dimer assay for the diagnosis of disseminated intravascular coagulation. Am J Clin Pathol 122:178–184PubMedCrossRefGoogle Scholar
  155. Lehman CM, Blaylock RC, Alexander DP, Rodgers GM (2001) Discontinuation of the bleeding time test without detectable adverse clinical impact. Clin Chem 47:1204–1211PubMedGoogle Scholar
  156. Leonardi MS, Gazzara D, Fava C, Foca A, Mastroeni P (1983) Enzyme-linked immunosorbent assay (ELISA) for streptokinase antibodies. Diagn Immunol 1:64–67PubMedGoogle Scholar
  157. Liu L, Houng A, Tsai J, Chowdhry S, Sazonova I, Reed GL (1999) The fibronectin motif in the NH2-terminus of streptokinase plays a critical role in fibrin-independent plasminogen activation. Circulation 100(Suppl S):1Google Scholar
  158. Liu BY, Song HY (2002) Molecular cloning and expression of nattokinase gene in Bacillus subtilis. Acta Biochim Biophys Sin (Shanghai) 34(3):338–340Google Scholar
  159. Liu JG, Xing JM, Shen R, Yang CL, Liu HZ (2004) Reverse micelles extraction of nattokinase from fermentation broth. Biochem Eng J 21:273–278CrossRefGoogle Scholar
  160. Liu JG, Xing JM, Chang TS, Ma ZY, Liu HZ (2005) Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem 40:2757–2762CrossRefGoogle Scholar
  161. Lopez-Sendon J, de Lopez SE, Bobadilla JF, Rubio R, Bermejo J, Delcan JL (1995) Cardiovascular pharmacology (XIII). The efficacy of different thrombolytic drugs in the treatment of acute myocardial infarct. Rev Esp Cardiol 48:407–439PubMedGoogle Scholar
  162. Lowe GDO, Rumley A, Mackie IJ (2004) Plasma fibrinogen. Ann Clin Biochem 41:430–440PubMedCrossRefGoogle Scholar
  163. Lu F, Sun L, Lu Z, Bie X, Fang Y, Liu S (2007) Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr Microbiol 54:435–439PubMedCrossRefGoogle Scholar
  164. Macfarlane RG, Piling J (1946) Observations on fibrinolysis: plasminogen, plasmin, and antiplasmin content of human blood. Lancet 2:562PubMedCrossRefGoogle Scholar
  165. Mackie IJ, Kitchen S, Machin SJ et al (2003) The haemostasis and thrombosis task force of the British Committee for standards in haematology. Guidelines on fibrinogen assays. Br J Haematol 121:396–404PubMedCrossRefGoogle Scholar
  166. Maggioni AP, Franzosi MG, Santoro E, White H, Van de Werf F, Tognoni G (1992) The risk of stroke in patients with acute myocardial infarction after thrombolytic and antithrombotic treatment. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico II (GISSI-2), and the International Study Group. N Engl J Med 327(1):1–6PubMedCrossRefGoogle Scholar
  167. Maillard C, Berruyer M, Serre CM, Dechavanne M, Deelmas PD (1992) Protein-S, a vitamin K-dependent protein, is a bone matrix component synthesized and secreted by osteoblasts. Endocrinol 130:1599–1604CrossRefGoogle Scholar
  168. Malke H (1993) Polymorphism of the streptokinase gene—implications for the pathogenesis of poststreptococcal lomerulonephritis. Zentralbl Bakteriol 278:246–257PubMedCrossRefGoogle Scholar
  169. Malke H, Ferretti JJ (1984) Streptokinase: cloning, expression and excretion by Escherichia coli. Proc Natl Acad Sci U S A 81:3557–3561PubMedCrossRefGoogle Scholar
  170. Malke H, Roe B, Ferretti J (1985) Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34:357–362PubMedCrossRefGoogle Scholar
  171. Malke H, Steiner K, Gase K, Frank C (2000) Expression and regulation of the streptokinase gene. Methods 21:111–124PubMedCrossRefGoogle Scholar
  172. Marder VJ (1993) Recombinant streptokinase—opportunity for an improved agent. Blood Coagul Fibrinolysis 4:1039–1040PubMedGoogle Scholar
  173. Markland FS (1998) Snake venoms and the hemostatic system. Toxicon 36:1749–1800PubMedCrossRefGoogle Scholar
  174. Marsh NA, Gaffney NJ (1977) The rapid fibrin plate-a method for plasminogen activator assay. Thromb Haemostat 38:545–551Google Scholar
  175. Matsuo O, Okada K, Fukao H, Tomioka Y, Ueshima S, Watanuki M et al (1990) Thrombolytic properties of staphylokinase. Blood 76:925–929PubMedGoogle Scholar
  176. Matsubara K, Sumi H, Hori K, Miyazawa K (1998) Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp Biochem Physiol Biochem Mol Biol 119:177–181CrossRefGoogle Scholar
  177. Matsubara K, Hori K, Matsuura Y, Miyazawa K (1999) A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52(6):993–999PubMedCrossRefGoogle Scholar
  178. Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol Biochem Mol Biol 125(1):137–143CrossRefGoogle Scholar
  179. Mazzone A, Catalani M, Costanzo M, Drusian A, Mandoli A, Russo S, Guarini E, Vesperini G (1990) Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, double-blind, randomized trial versus placebo. J Int Med Res 18:379–388PubMedGoogle Scholar
  180. McCoy HE, Broder CC, Lottenberg R (1991) Streptokinases produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J Infect Dis 164:515–521PubMedCrossRefGoogle Scholar
  181. Mihara H, Sumi H, Akazawa K, Yoneds T, Mizumoto H (1983) Fibrinolytic enzyme extracted from the earthworm. J Thromb Haemost 50:258Google Scholar
  182. Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikedo R, Seiki M, Maruyama M (1991) A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn J Physiol 41(3):461–472PubMedCrossRefGoogle Scholar
  183. Millar WT, Smith JF (1983) The comparison of solid phase and fibrin plate methods for the measurement of plasminogen activators. Thromb Res 30:431–439PubMedCrossRefGoogle Scholar
  184. Milochau A, Lassegues M, Valembois P (1997) Purification, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei. Biochim Biophys Acta 1337:123–132PubMedCrossRefGoogle Scholar
  185. Mine Y, Wong A, Jiang B (2005) Fibrinolytic enzymes in Asian traditional fermented foods. Food Res Int 38:243–250CrossRefGoogle Scholar
  186. Miyata K, Maejima K, Tomoda K, Isono M (1970) Serratia protease part I: purification and general properties of the enzyme. Agric Biol Chem 34(2):310–318Google Scholar
  187. Muller J, Malke H (1990) Duplication of the streptokinase gene in the chromosome of Streptococcus equisimilis H46A. FEMS Microbiol Lett 72:75–78CrossRefGoogle Scholar
  188. Mullertz S (1954) Effect of carboxylic and amino acids on fibrinolysis produced by plasmin, plasminogen activator, and proteinases. Proc Soc Exp Biol Med 85:326–329PubMedGoogle Scholar
  189. Mundada LV, Prorok M, DeFord ME, Figuera M, Castellino FJ, Fay WP (2003) Structure–function analysis of the streptokinase amino terminus (residues 1–59). J Biol Chem 278:24421–24427Google Scholar
  190. Muramatsu S (1912) On the preparation of natto. Journal of the College of Agriculture. Imp Univ Tokyo 5(1):81–94Google Scholar
  191. Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee IS, Hase T, Matsubara H (1986) Cloning and sequencing of Serratia protease gene. Nucleic Acids Res 14:5843–5855Google Scholar
  192. Nakajima N, Mihara H, Sumi H (1993) Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotech Biochem 57:1726–1730CrossRefGoogle Scholar
  193. Nakajima N, Ishihara K, Sugimoto M, Sumi H, Mikuni K, Hamada H (1996) Chemical modification of earthworm fibrinolytic enzyme with human serum albumin fragment and characterization of the protease as a therapeutic enzyme. Biosci Biotech Biochem 60:293–300CrossRefGoogle Scholar
  194. Nakamura S, Hashimoto Y, Mikami M, Yamanaka E, Soma T, Hino M, Azuma A, Kudoh S (2003) Effect of the proteolytic enzyme serrapeptase in patients with chronic airway disease. Respirol 8:316–320CrossRefGoogle Scholar
  195. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56(11):1869–1871PubMedCrossRefGoogle Scholar
  196. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56(11):1869–1871PubMedCrossRefGoogle Scholar
  197. Narciandi RE, Morbe FJ, Riesenberg D (1996) Maximizing the expression of recombinant kringle 1 (Streptokinase) synthesized in Escherichia coli: influence of culture and induction conditions. Biotechnol Lett 18:1261–1266CrossRefGoogle Scholar
  198. Nemirovich-Danchenko MM, Alekseeva VN, Lebedeva VV, Shashkova NM, Feigel’man BI, Burovaya FI, Smirnova EM (1985) Streptokinase (in Russian). USSR Patent SU 1147749Google Scholar
  199. Nicolini FA, Nichols WW, Mehta JL, Saldeen TGP, Schofield R, Ross M et al (1992) Sustained reflow in dogs with coronary thrombosis with K2P, a novel mutant of tissue plasminogen activator. J Am Coll Cardiol 20:228–235PubMedCrossRefGoogle Scholar
  200. Nieuwenhuizen W, Wijngaards G, Groeneverd E (1978) Fluorogenic substrates for sensitive and differential estimation of urokinase and tissue plasminogen activator. Haemost 7:146–149Google Scholar
  201. Nihalani D, Sahni G (1995) Streptokinase contains two independent plasminogen-binding sites. Biochem Biophys Res Commun 217:1245–1254PubMedCrossRefGoogle Scholar
  202. Nihalani D, Kumar R, Rajagopal K, Sahni G (1998) Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. Protein Sci 7:637–648PubMedCrossRefGoogle Scholar
  203. Nikai T, Mori N, Kishida M, Sugihara H, Tu A (1984) Isolation and biochemical characterization of hemorrhagic toxin F from the venom of Crotalus atrox. Arch Biochem Biophys 231:309–319PubMedCrossRefGoogle Scholar
  204. Ninobe M, Hitomi Y, Fujii S (1980) A sensitive colorimetric assay for various proteases using naphthyl ester derivatives as substrates. J Biochem 87:779–783Google Scholar
  205. Noh KA, Kim DH, Choi NS, Kim SH (1999) Isolation of fibrinolytic enzyme producing strains from kimchi. Kor J Food Sci Technol 31:219–223Google Scholar
  206. Nonaka T, Dohmae N, Hashimoto Y, Takio K (1997) Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J Biol Chem 272:30032–30039PubMedCrossRefGoogle Scholar
  207. Oden A, Fahlen M (2002) Oral anticoagulation and risk of death: a medical record lineage study. Br Med J 325:1073–1075CrossRefGoogle Scholar
  208. Ojalvo AG, Pozo L, Labarta V, Torrens I (1999) Prevalence of circulating antibodies against a streptokinase C-terminal peptide in normal blood donors. Biochem Biophys Res Commun 263:454–459PubMedCrossRefGoogle Scholar
  209. Okada K, Ueshima S, Fukao H, Matsuo O (2001) Analysis of complex formation between plasmin(ogen) and staphylokinase or streptokinase. Arch Biochem Biophys 393:339–341PubMedCrossRefGoogle Scholar
  210. Ozegowski JH, Gerlach D, Kohler W (1983) Influence of physical parameters on the production of streptococcal extracellular proteins in cultures with stabilized pH: 2: temperature dependence of extracellular protein production. Zentralbl Bakteriol Microbiol Hyg 254:361–369Google Scholar
  211. Paik HD, Lee SK, Heo S, Kim SY, Lee H, Kwon TJ (2004) Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J Microbiol Biotechnol 14(4):829–835Google Scholar
  212. Pais E, Alexy T, Holsworth RE Jr, Meiselman HJ (2006) Effects of nattokinase, a pro-fibrinolytic enzyme, on red blood cell aggregation and whole blood viscosity. Clin Hemorheol Microcirc 35(1–2):139–142PubMedGoogle Scholar
  213. Pautov VD, Anufrieva EV, Ananeva TD, Saveleva NV, Taratina TM, Krakovyak MG (1990) Structural dynamic and functional properties of native and modified streptokinase. Mol Biol 24:35–41Google Scholar
  214. Perez N, Urrutia E, Camino J, Orta DR, Torres Y, Martinez Y et al (1998) Hydrophobic interaction chromatography applied to purification of recombinant streptokinase. Biotechnology 10:174–177Google Scholar
  215. Permin PM (1947) Properties of the fibrinokinase–fibrinolysin system. Nature 160:571–572PubMedCrossRefGoogle Scholar
  216. Peng Y, Zhang YZ (2002a) Isolation and characterization of fibrinolytic enzyme-producing strain DC-4 from Chinese douchi and primary analysis of the enzyme property. Chin High Technol Lett 12:30–34Google Scholar
  217. Peng Y, Zhang YZ (2002b) Cloning and expression in E. coli of coding sequence of the fibrinolytic enzyme mature peptide from Bacillus amyloliquefaciens DC-4. Chin J Appl Environ Biol 8:285–289Google Scholar
  218. Peng Y, Zhang YZ (2002c) Optimization of fermentation conditions of douchi fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4. Chin Food Ferment Ind 28:19–23Google Scholar
  219. Peng Y, Huang Q, Zhang RH, Zhang YZ (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol Biochem Mol Biol 134:45–52CrossRefGoogle Scholar
  220. Peng Y, Yang XJ, Xiao L, Zhang YZ (2004) Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res Microbiol 155(3):167–173PubMedCrossRefGoogle Scholar
  221. Petkov D, Christova E, Karadjova M (1973) Amidase activity of urokinase. I. Hydrolysis of alpha-N-acetyl-l-lysine p-nitroanilide. Thromb Diath Haemorrh 29:276–285PubMedGoogle Scholar
  222. Pratap J, Kaur J, Rajamohan G, Singh D, Dikshit KL (1996) Role of N-terminal domain of streptokinase in protein transport. Biochem Biophys Res Commun 227:303–310PubMedCrossRefGoogle Scholar
  223. Pratap J, Rajamohan G, Dikshit KL (2000) Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 53:469–475PubMedCrossRefGoogle Scholar
  224. Ratnoff OD (1952) Studies on a proteolytic enzyme in human plasma. VIII. The effect of calcium and strontium ions on the activation of the plasma proteolytic enzyme. J Exp Med 96:319PubMedCrossRefGoogle Scholar
  225. Reddy K, Nagendra N, Markus G (1974) Esterase activities in the zymogen moiety of the streptokinase–plasminogen complex. J Biol Chem 249:4851–4857PubMedGoogle Scholar
  226. Reed GL, Kussie P, Parhamiseren B (1993) A functional analysis of the antigenicity of streptokinase using monoclonal antibody mapping and recombinant streptokinase fragments. J Immunol 150:4407–4415PubMedGoogle Scholar
  227. Reed GL, Liu L, Houng AK, Matsueda LH, Lizbeth H (1998) Mechanisms of fibrin independent and fibrin dependent plasminogen activation by streptokinase. Circulation 98:199Google Scholar
  228. Regnault V, Helft G, Wahl D, Czitrom D, Vuillemenot A, Papouin G et al (2003) Anti streptokinase platelet-activating antibodies are common and heterogeneous. J Thromb Hemost 1:1055–1061CrossRefGoogle Scholar
  229. Roberts PS (1958) Measurement of the rate of plasmin action on synthetic substrates. J Biol Chem 232:285–291PubMedGoogle Scholar
  230. Robbins KC (1978) The human plasma fibrinolytic system: regulation and control. Mol Cell Biochem 20(3):149–157PubMedCrossRefGoogle Scholar
  231. Robinson BR, Liu L, Houng AK, Sazanova IY, Reed GL (2000) The streptokinase beta domain plays a critical role in activator complex formation and substrate docking. Circulation 102:490Google Scholar
  232. Robbins KC, Summaria L (1970) Human plasminogen and plasmin. Methods Enzymol 19:184–199CrossRefGoogle Scholar
  233. Robbins KC, Summaria L (1976) Human plasminogen and plasmin. Methods Enzymol 45:257–273PubMedCrossRefGoogle Scholar
  234. Roche PL, Compeau JD, Schaw ST (1983) A rapid and highly sensitive solid-phase radioassay for plasminogen activators. Thromb Res 31:269–277PubMedCrossRefGoogle Scholar
  235. Roch P (1979) Protein analysis of earthworm coelomic fluid: I Polymorphic system of the natural hemolysin of Eisenia fetida andrei. Devel Comp Immun 3:599–608CrossRefGoogle Scholar
  236. Rodgers GM (2004) The diagnostic approach to the bleeding disorders. In: Greer JP, Foerster J, Lukens JN et al (eds) Wintrobe’s Clinical Hematology, 11th edn. Williams & Wilkins, Baltimore, pp 1511–1528Google Scholar
  237. Rodriguez P, Hernandez L, Munoz E, Castro A, Fuente JDL, Herrera L (1992) Purification of streptokinase by affinitychromatography on immobilized acylated human plasminogen. BioTechniques 12:424PubMedGoogle Scholar
  238. Rodriguez P, Fuentes D, Munoz E, Rivero D, Orta D, Alburquerque S et al (1994) The streptokinase domain responsible for plasminogen binding. Fibrinolysis 8:276–285CrossRefGoogle Scholar
  239. Rosenberger RF, Elsden SR (1960) The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol 22:726–739PubMedGoogle Scholar
  240. Ruppert C, Markart P, Schmidt R, Grimminger F, Seeger W, Lehr CM, Gunther A (2003) Chemical crosslinking of urokinase to pulmonary surfactant protein B for targeting alveolar fibrin. Thromb Haemost 89:53–64PubMedGoogle Scholar
  241. Saksela O (1981) Radial caseinolysis in agarose: a simple method for detection of plasminogen activators in the presence of inhibitory substances and serum. Anal Biochem 111:276–282PubMedCrossRefGoogle Scholar
  242. Sazonova IY, Houng AK, Chowdhry SA, Reed GL (2000) Mechanism of action of a novel Streptococcus uberis plasminogen activator (SUPA). Circulation 102:489Google Scholar
  243. Seo JH, Lee SP (2004) Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J Med Food 7(4):442–449PubMedCrossRefGoogle Scholar
  244. Sharma S, Aneja MK, Mayer J, Schloter M, Munch JC (2004) RNA fingerprinting of microbial community in the rhizosphere soil of grain legumes. FEMS Microbiol Lett 240:181–186PubMedCrossRefGoogle Scholar
  245. Shemanova F, Postnikova TM, Rostov G (1995) Enzyme immunoassay of antistreptokinase. Klin Lab Diagn 2:26–29 (in Russian)Google Scholar
  246. Sherry S, Troll W (1954) The action of thrombin on synthetic substrates. J Biol Chem 208:95–105PubMedGoogle Scholar
  247. Sherry S, Alkjaersig N, Fletcher AP (1964) Assay of urokinase preparations with the synthetic substrate acetyl-L-lysine methyl ester. J Lab Clin Med 64:145–153PubMedGoogle Scholar
  248. Sherry S, Alkjaersig N, Fletcher AP (1966) Activity of plasmin and streptokinase-activator on substituted arginine and lysine esters. Throm Diath Haemorrh 16:18–31Google Scholar
  249. Sherry S, Lindemeyer RI, Fletcher AP, Alkjaersig N (1959) Studies on enhanced fibrinolytic activity in man. J Clin Invest 38:810PubMedCrossRefGoogle Scholar
  250. Shi GY, Chang BI, Chen SM, Wu DH, Wu HL (1994) Function of streptokinase fragments in plasminogen activation. Biochem J 304:235–241PubMedGoogle Scholar
  251. Shi GY, Chang BI, Su SW, Young KC, Wu DH, Chang LC et al (1998) Preparation of a novel streptokinase mutant with improved stability. Thromb Hemost 79:992–997Google Scholar
  252. Silverstein M (1975) The determination of human plasminogen using Na-CBZ-L-lysin p-nitrophenyl ester as substrate. Anal Biochem 65:500–506PubMedCrossRefGoogle Scholar
  253. Silverthorn AC, Ober WC, Garrison CW (1998) Human physiology: an integrated approach. Prentice-Hall Inc, New York, pp 465–471Google Scholar
  254. Smith RAG, Dupe RJ, English PD, Green J (1981) Fibrinolysis with acyl-enzymes-a new approach to thrombolytic therapy. Nature 290:505–508PubMedCrossRefGoogle Scholar
  255. Somerville DA (1972) A technique for demonstrating fibrinolysis by cutaneous bacteria. J Clin Pathol 25:740–741PubMedCrossRefGoogle Scholar
  256. Stein PD, Hull RD, Patel KC et al (2004) D-Dimer for the exclusion of acute venous thrombosis and pulmonary embolism. Ann Intern Med 140:589–602PubMedGoogle Scholar
  257. Stuebner K, Boschke E, Wolfe K-H, Langer J (1991) Kinetic analysis and modeling of streptokinase fermentation. Acta Biotechnol 11:467–477CrossRefGoogle Scholar
  258. Suh H, Kim KH, Kim SS, Han MH (1984) Culture conditions of Streptococcus sp. for streptokinase production. Sanop Misaengmul Hakhoechi 12(3):224–231Google Scholar
  259. Sumi H, Nakajima N, Mihara H (1993) A very stable and potent fibrinolytic enzyme found in earthworm Lumbricus rubellus autolysate. Comp Biochem Physiol 106(B):763–766Google Scholar
  260. Sumi H, Nakajima N, Yatagai C (1995) A unique strong fibrinolytic enzyme (datsuwokinase) in skipjack ‘‘Shiokara’’, a Japanese traditional fermented food. Comp Biochem and Physiol 112:543–547CrossRefGoogle Scholar
  261. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111PubMedCrossRefGoogle Scholar
  262. Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84(3):139–143PubMedCrossRefGoogle Scholar
  263. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111PubMedCrossRefGoogle Scholar
  264. Sumi H, Hamada H, Mihara H, Nakanishi K, Hiratani H (1989) Fibrinolytic effect of the Japanese traditional food natto (nattokinase). Thromb Haemost 62(1):549Google Scholar
  265. Sumi H, Nakajima N, Mihara H (1992) In vitro and in vivo fibrinolytic properties of nattokinase. Thromb Haemost 89:1267Google Scholar
  266. Sun T, Liu BH, Li P, Liu DM, Li ZH (1998) New solid-state fermentation process for repeated batch production of fibrinolytic enzyme by Fusarium oxysporum. Process Biochem 33(4):419–422CrossRefGoogle Scholar
  267. Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G (2003) Domain truncation studies reveal that the streptokinase–plasmin activator complex utilizes long range protein–protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem 278:30569–30577PubMedCrossRefGoogle Scholar
  268. Suttie LW, Machlin LJ (1991) Vitamin K In: Handbook of vitamins, 2nd edn. Marcel Dekker, New York and Basel, pp 145–188Google Scholar
  269. Suzuki Y, Kondo K, Ichise H, Tsukamoto Y, Urano T, Umemura K (2003a) Dietary supplementation with fermented soybeans suppresses intimal thickening. Nutrition 19:261–264PubMedCrossRefGoogle Scholar
  270. Suzuki Y, Kondo K, Matsumoto Y, Zhao BQ, Otsuguro K, Maeda T, Tsukamoto Y, Urano T, Umemura K (2003b) Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci 73:1289–1298PubMedCrossRefGoogle Scholar
  271. Swenson S, Markland FS Jr (2005) Snake venom fibrin(ogen)olytic enzymes. Toxicon 45:1021–1039PubMedCrossRefGoogle Scholar
  272. Tachibana M, Mizukoshi O, Harada Y, Kawamoto K, Nakai Y (1984) A multi-centre, double-blind study of serrapeptase versus placebo in postantrotomy buccal swelling. Pharmatherapeutica 3:526–530PubMedGoogle Scholar
  273. Tait JF, Engelhardt S, Smith C, Fujikawa K (1995) Prourokinaseannexin V chimeras. construction, expression, and characterization of recombinant proteins. J Biol Chem 270(37):21594–21599PubMedCrossRefGoogle Scholar
  274. Tang Y, Liang DC, Jiang T, Zhang JP, Gui LL, Chang WR (2002) Crystal structure of earthworm fibrinolytic enzyme component A: revealing the structural determinants of its dual fibrinolytic activity. J Mol Biol 321:57–68PubMedCrossRefGoogle Scholar
  275. Tao S, Peng L, Beihui L, Deming L, Zuohu L (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19(5):465–467CrossRefGoogle Scholar
  276. Tao S, Peng L, Beihui L, Deming L, Zuohu L (1998) Successive cultivation of Fusarium oxysporum on rice chaff for economic production of fibrinolytic enzyme. Bioprocess Eng 18(5):379–381Google Scholar
  277. Taylor FB, Botts J (1968) Purification and characterization of streptokinase with studies of streptokinase activation of plasminogen. Biochemistry 7:232–242PubMedCrossRefGoogle Scholar
  278. Tillett WS, Garner RL (1933) Fibrinolytic activity of hemolytic streptococci. J Exp Med 58:485–502PubMedCrossRefGoogle Scholar
  279. Troll W, Sherry S, Wachman J (1954) The action of plasmin on synthetic substrates. J Biol Chem 208:85–93PubMedGoogle Scholar
  280. Tomar RH (1968) Streptokinase: preparation, comparison with streptococcal proteinase, and behavior as a trypsin substrate. Proc Soc Exp Biol Med 127:239–244PubMedGoogle Scholar
  281. Torrens I, Ojalvo AG, Seralena A, Hayes O, de la Fuente J (1999) A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunol Lett 70:213–218PubMedCrossRefGoogle Scholar
  282. Troll W, Sherry S, Wachman J (1954) The action of plasmin on synthetic substrates. J Biol Chem 208:85–93PubMedGoogle Scholar
  283. Tough J (2005) Thrombolytic therapy in acute myocardial infarction. Nurs Stand 19(37):55–64PubMedGoogle Scholar
  284. Turpie AG, Chin BS, Lip GY (2002) Venous thromboembolism: treatment strategies. Br Med J 325:948–950CrossRefGoogle Scholar
  285. Urano T, Ihara H, Umemura K, Suzuki Y, Oike M, Akita S, Tsukamoto Y, Suzuki I, Takada A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696PubMedCrossRefGoogle Scholar
  286. Unkeless J, Gardon S, Reich E (1974) Secretion of plasminogen activator by stimulated macrophages. J Exp Med 139:834–850PubMedCrossRefGoogle Scholar
  287. Wakeham N, Terzyan S, Zhai PZ, Loy JA, Tang J, Zhang XC (2002) Effects of deletion of streptokinase residues 48–59 on plasminogen activation. Protein Eng 15:753–761PubMedCrossRefGoogle Scholar
  288. Walker ID, Davidson JF (1985) Blood coagulation and haemnostasis—a practical guide, 3rd edn. Churchill Livingstone, Edinburgh, p 229Google Scholar
  289. Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665PubMedCrossRefGoogle Scholar
  290. Wang SG, Reed GL, Hedstrom L (1999) Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry 38:5232–5240PubMedCrossRefGoogle Scholar
  291. Wang JD, Narui T, Kurata H, Taeuchi K, Hashimoto T, Okuyama T (1989) Hematological studies on naturally occurring substances II. Eject of animal crude drugs on blood coagulation and fibrinolysis systems. Chem Pharm Bull 37:2236–2238PubMedCrossRefGoogle Scholar
  292. Wang J, Wang M, Wang Y (1999a) Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin J Biotechnol 15(2):83–89PubMedGoogle Scholar
  293. Wang SG, Reed GL, Hedstrom L (1999b) Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry 38:5232–5240PubMedCrossRefGoogle Scholar
  294. Wang F, Wang C, Li M, Cui L, Zhang J, Chang W (2003) Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnol Lett 25:1105–1109PubMedCrossRefGoogle Scholar
  295. Wang C, Ji B, Li B, Ji H (2006a) Enzymatic properties and identification of a fibrinolytic serine protease purified from Bacillus subtilis DC33. World J Microbiol Biotechnol 22:1365–1371CrossRefGoogle Scholar
  296. Wang SL, Kao TY, Wang CL, Yen YH, Chern MK, Chen YH (2006b) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microb Technol 39:724–731Google Scholar
  297. Wang SH, Cheng Z, Yang YL, Miao D, Bai MF (2008) Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World J Microbiol Biotechnol 24:475–482CrossRefGoogle Scholar
  298. Wang S, Chen H, Liang T, Lin Y (2009) A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem 44:70–76CrossRefGoogle Scholar
  299. Westlund LE, Andersson LO (1991) Variables influencing the clot lysis assay of streptokinase. Thromb Res 64:713–721PubMedCrossRefGoogle Scholar
  300. Wheatley DJ (2002) Coronary artery surgery at the dawn of the 21st century. J R Coll Surg Edinb 47(4):608–612PubMedGoogle Scholar
  301. White J (2005) Snake venoms and coagulopathy. Toxicon 45:951–967PubMedCrossRefGoogle Scholar
  302. Wong SL (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517–522PubMedCrossRefGoogle Scholar
  303. World Health Organization (2000) The World Health Report in 2000 C F, Wong AHK (2003) A novel fibrinolytic enzyme from fermented shrimp paste. M.Sc. thesis, University of GuelphGoogle Scholar
  304. World Health Organization (2001) The World Health Report 2001 C F, Wong AHK (2003) A novel fibrinolytic enzyme from fermented shrimp paste. M.Sc. thesis, University of GuelphGoogle Scholar
  305. Wong SL, Ye RQ, Nathoo S (1994) Engineering and production of streptokinase in Bacillus subtilis expression–secretion system. Appl Environ Microbiol 60:517–523PubMedGoogle Scholar
  306. Wu KK, Thiagarajan P (1996) Role of endothelium in thrombosis and hemostasis. Annu Rev Med 47:315–331PubMedCrossRefGoogle Scholar
  307. Wu XC, Ye RQ, Duan YJ, Wong S-L (1998) Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol 64:824–829PubMedGoogle Scholar
  308. Wu DH, Shi GY, Chuang WJ, Hsu JM, Young KC, Chang CW et al (2001) Coiled coil region of streptokinase gamma domain is essential for plasminogen activation. J Biol Chem 276:15025–15033PubMedCrossRefGoogle Scholar
  309. Xiao L, Zhang RH, Peng Y, Zhang YZ (2004) Highly efficient gene expression of a fibrinolytic enzyme (subtilisin DFE) in Bacillus subtilis mediated by the promoter of α-amylase gene from Bacillus amyloliquefaciens. Biotechnol Lett 26:1365–1369PubMedCrossRefGoogle Scholar
  310. Xiao-Lan L, Lian-Xiang D, Fu-Ping L, Xi-Qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67(2):209–214PubMedCrossRefGoogle Scholar
  311. Xu YH, Liang GD, Sun ZJ, Chem F, Fu SH, Chai YB, Hou YD (2002) Cloning and expression of the novel gene-pV242 of earthworm fibrinolytic enzyme. Prog Biochem Biophys 29:610–614Google Scholar
  312. Yang J, Ru B (1997) Purification and characterization of an SDS activated fibrinolytic enzyme from Eisenia fetida. Comp Biochem Physiol 118B(3):623–631Google Scholar
  313. Yoon SJ, Yu MA, Sim GS, Kwon ST, Hwang JK, Shin JK, Yeo IH, Pyun YR (2002) Screening and characterization of microorganisms with fibrinolytic activity from fermented foods. J Microbiol Biotechnol 12(4):649–656Google Scholar
  314. Yazdani SS, Mukherjee KJ (1998) Overexpression of streptokinase using a fed-batch strategy. Biotechnol Lett 20:923–927CrossRefGoogle Scholar
  315. Yazdani SS, Mukherjee KJ (2002) Continuous culture studies on the stability and expression of recombinant streptokinase in Escherichia coli. Bioprocess Biosyst Eng 24:341–346CrossRefGoogle Scholar
  316. Young KC, Shi GY, Chang YF, Chang BI, Chang LC, Lai MD et al (1995) Interaction of streptokinase and plasminogen-studied with truncated streptokinase peptides. J Biol Chem 270:29601–29606PubMedCrossRefGoogle Scholar
  317. Zhai P, Wakeham N, Loy JA, Zhang XC (2003) Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation. Biochemistry 42:114–120PubMedCrossRefGoogle Scholar
  318. Zhang XW, Sun T, Huang XN, Liu X, Gu DX, Tang ZQ (1999) Recombinant streptokinase production by fed-batch cultivation of Escherichia coli. Enzyme Microb Technol 24:647–650CrossRefGoogle Scholar
  319. Zhang RH, Xiao L, Peng Y, Wang HY, Bai F, Zhang YZ (2005) Expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Lett Appl Microbiol 41:190–195PubMedCrossRefGoogle Scholar
  320. Zheng ZL, Zuo ZY, Liu ZG, Tsai KC, Liu AF, Zou GL (2005) Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase. J Mol Graph Model 23:373–380PubMedCrossRefGoogle Scholar
  321. Zhu X, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484PubMedCrossRefGoogle Scholar
  322. Zimmerman M, Quigley JP, Ashe B, Dron C, Goldfarb R, Troll W (1978) Direct fluorescent assay of urokinase and plasminogen activators of normal and malignant cells: kinetics and inhibitor profiles. Proc Natl Acad Sci U S A 75:750–753PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Botany and MicrobiologyZagazig UniversityZagazigEgypt

Personalised recommendations