Skip to main content

A Memetic Approach to Protein Structure Prediction in Triangular Lattices

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7062))

Included in the following conference series:

  • 3822 Accesses

Abstract

Protein structure prediction (PSP) remains one of the most challenging open problems in structural bioinformatics. Simplified models in terms of lattice structure and energy function have been proposed to ease the computational hardness of this combinatorial optimization problem. In this paper, we describe a clustered meme-based evolutionary approach for PSP using triangular lattice model. Under the framework of memetic algorithm, the proposed method extracts a pool of cultural information from different regions of the search space using data clustering technique. These highly observed local substructures, termed as meme, are then aggregated centrally for further refinements as second stage of evolution. The optimal utilization of ‘explore-and-exploit’ feature of evolutionary algorithms is ensured by the inherent parallel architecture of the algorithm and subsequent use of cultural information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., et al.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model. In: Proc. SODA 1997, pp. 390–399 (1997)

    Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  3. Bazzoli, A., Tettamanzi, A.G.B.: A Memetic Algorithm for Protein Structure Prediction in a 3D-Lattice HP Model. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 1–10. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.: A Local Move Set for Protein Folding in Triangular Lattice Models. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 369–381. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Crescenzi, P., et al.: On the complexity of protein folding. Journal of Computational Biology 5, 423–465 (1998)

    Article  Google Scholar 

  6. Dal Palù, A., et al.: A constraint solver for discrete lattices, its parallelization, and application to protein structure prediction. Software-Practice and Experience 37, 1405–1449 (2007)

    Article  Google Scholar 

  7. Dawkins, R.: The Selfish Gene. Oxford University Press, New York (1976)

    Google Scholar 

  8. Dill, K.A., et al.: Principles of protein folding - A perspective from simple exact models. Protein Science 4, 561–602 (1995)

    Article  Google Scholar 

  9. Hart, W.E., et al.: Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal. In: ACM Symposium on Theory of Computing, pp. 157–168 (1995)

    Google Scholar 

  10. Hoque, M.T., Chetty, M., Dooley, L.S.: A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 867–876. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Hoque, M.T., et al.: Protein folding prediction in 3d fcc hp lattice model using genetic algorithm. In: Proc. CEC 2007, pp. 4138–4145 (2007)

    Google Scholar 

  12. Islam, M. K., Chetty, M.: Novel Memetic Algorithm for Protein Structure Prediction. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 412–421. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Islam, M.K., et al.: Clustered Memetic Algorithm for Protein Structure Prediction. In: Proc. CEC 2010, pp. 1–8 (2010)

    Google Scholar 

  14. Jiang, T., et al.: Protein folding simulations of the hydrophobic–hydrophilic model by combining tabu search with genetic algorithms. The Journal of Chemical Physics 119(8), 4592–4596 (2003)

    Article  Google Scholar 

  15. Kapsokalivas, L., et al.: Two Local Search Methods for Protein Folding Simulation in the HP and the MJ Lattice Models. In: Proc. BIRD 2008, pp. 167–179 (2008)

    Google Scholar 

  16. Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme Algorithms for Protein Structure Prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)

    Google Scholar 

  17. Lesh, N., et al.: A complete and effective move set for simplified protein folding. In: Proc. ICCB 2003, pp. 188–195 (2003)

    Google Scholar 

  18. Liang, F., et al.: Evolutionary Monte Carlo for protein folding simulations. Journal of Chemical Physics 115(7), 3374–3380 (2001)

    Article  Google Scholar 

  19. Lopes, H.S., et al.: An enhanced genetic algorithm for protein structure prediction using the 2D hydrophobic-polar mode. In: Proc. AE 2005, pp. 238–246 (2005)

    Google Scholar 

  20. Mann, M., et al.: CPSP-tools - Exact and Complete Algorithms for High-throughput 3D Lattice Protein Studies. BMC Bioinformatics 9, 230 (2008)

    Article  Google Scholar 

  21. Martínez-estudillo, A., et al.: Hybridization of evolutionary algorithms and local search by means of a clustering method. IEEE Transactions on Systems, Man and Cybernetics, Part B 36, 534–545 (2006)

    Article  Google Scholar 

  22. Ong, Y., et al.: Memetic Computation — Past, Present & Future [Research Frontier]. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

    Article  Google Scholar 

  23. Park, B.H., et al.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249(2), 493–507 (1995)

    Article  Google Scholar 

  24. Pelta, D.A., et al.: Multimeme algorithms using fuzzy logic based memes for protein structure prediction. In: Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms. Springer, Heidelberg (2004)

    Google Scholar 

  25. Shmygelska, A., et al.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6(30) (2005)

    Google Scholar 

  26. Thachuk, C., et al.: A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC Bioinformatics 8, 342 (2007)

    Article  Google Scholar 

  27. Unger, R., et al.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 231(1), 75–81 (1993)

    Article  Google Scholar 

  28. Yue, K., et al.: Forces of tertiary structural organization in globular proteins. Proc. Natural Academy of Sciences USA 92, 146–150 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Islam, M.K., Chetty, M., Ullah, A.D., Steinhöfel, K. (2011). A Memetic Approach to Protein Structure Prediction in Triangular Lattices. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24955-6_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24954-9

  • Online ISBN: 978-3-642-24955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics