Skip to main content

Neuronale Mechanismen sozialer Kognition unter genetischem Einfluss

  • Chapter
  • First Online:
Theory of Mind
  • 9962 Accesses

Zusammenfassung

Die sozialen Neurowissenschaften haben in den letzten Jahren ein explosives Wachstum erfahren. Ergebnisse dieses noch jungen Forschungsgebiets eröffnen neue Perspektiven für diverse Bereiche ‒ von Biologie und Evolutionsforschung, Sozialwissenschaften und Philosophie bis hin zur Ökonomie (Adolphs 2003). In diesem Rahmen ergeben sich auch neue Aufschlüsse über die ToM, nämlich dann, wenn es gelingt, neuronale Submodule für einzelne Aspekte der sozialen Kognition abzugrenzen und zum übergreifenden Konzept einer ToM in Beziehung zu setzen (Tager-Flusberg u. Sullivan 2000). Methoden zur Abbildung von Korrelaten der Hirnfunktion in vivo, insbesondere die funktionelle Kernspintomographie (fMRT bzw. fMRI), haben hierzu entscheidend beigetragen, weil die Darstellung regional funktionell differenzierter Hirnaktivität im Rahmen der doch kognitiv meist komplexen sozial relevanten Verhaltensfunktionen wesentliche Hinweise auf solche Submodule liefern kann (Tost et al. 2005). Diese Befunde können mit tierexperimentellen, neuroanatomischen und neurophysiologischen Daten in Beziehung gesetzt werden, um so hoffentlich am Ende mechanistische oder zumindest doch testbare Hypothesen über solche Subfunktionen und ihr funktionelles Korrelat zu liefern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gefördert mit Mitteln des NIMH/IRP. Die in diesem Beitrag geäußerten Ansichten sind die des Verfassers und nicht notwendigerweise die des NIH/NIMH oder der Regierung der USA.

Literatur

  • Adolphs R (2003) Cognitive neuroscience of human social behaviour. Nature Rev Neurosci 4(3): 165–178

    Article  CAS  Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372(6507): 669–672

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG (2003) The amygdala, social behavior, and danger detection. Ann NY Acad Sci 1000: 337–347

    Article  PubMed  Google Scholar 

  • Bellugi U, Sabo H, Vaid J (1988) Dissociation between language and cognitive functions in Williams syndrome. In: Bishop DVM, Mogford-Bevan K (eds) Language development in exceptional circumstances. Churchill Livingstone, Edinburgh, pp 177–189

    Google Scholar 

  • Bellugi U, Adolphs R, Cassady C, Chiles M (1999) Towards the neural basis for hypersociability in a genetic syndrome. Neuroreport 10(8): 1653–1657

    Article  PubMed  CAS  Google Scholar 

  • Dilger S, Straube T, Mentzel HJ et al (2003) Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neurosci Lett 348(1): 29–32

    Article  PubMed  CAS  Google Scholar 

  • Drabant EM, Hariri AR, Meyer-Lindenberg A et al (2006) Catechol-O-methyltransferase Val158Met genotype and neural mechanisms of emotional arousal and regulation. Arch Gen Psychiatry, in press

    Google Scholar 

  • Dunbar R (2003) Psychology. Evolution of the social brain. Science 302(5648): 1160–1161

    Article  PubMed  CAS  Google Scholar 

  • Dykens EM (2003) Anxiety, fears, and phobias in persons with Williams syndrome. Dev Neuropsychol 23(1–2): 291–316

    PubMed  Google Scholar 

  • Fletcher PC, Happe F, Frith U et al (1995) Other minds in the brain: a functional imaging study of »theory of mind« in story comprehension. Cognition 57(2): 109–128

    Article  PubMed  CAS  Google Scholar 

  • Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115(4): 1261–1279

    Article  PubMed  CAS  Google Scholar 

  • Glabus MF, Horwitz B, Holt JL et al (2003) Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cerebr Cortex 13(12): 1352–1361

    Article  Google Scholar 

  • Hariri AR, Tessitore A, Mattay VS et al (2002) The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage 17(1): 317–323

    Article  PubMed  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A et al (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53(6): 494–501

    Article  PubMed  Google Scholar 

  • Hillier LW, Fulton RS, Fulton LA et al (2003) The DNA sequence of human chromosome 7. Nature 424(6945): 157–164

    Article  PubMed  CAS  Google Scholar 

  • Klein-Tasman BP, Mervis CB (2003) Distinctive personality characteristics of 8-, 9-, and 10-year-olds with Williams syndrome. Dev Neuropsychol 23(1–2): 269–290

    PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5): 341–372

    Article  PubMed  Google Scholar 

  • Mervis CB, Klein-Tasman BP (2000) Williams syndrome: cognition, personality, and adaptive behavior. Ment Retard Dev Disabil Res Rev 6(2): 148–158

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Kohn P, Mervis CB et al (2004) Neural basis of genetically determined visuospatial construction deficit in Williams syndrome. Neuron 43(5): 623–631

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Hariri AR, Munoz KE et al (2005a) Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neurosci 8(8): 991–993

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg A, Mervis CB, Sarpal D et al (2005b) Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. J Clin Invest 115(7): 1888–1895

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg A, Mervis CB, Berman KF (2006) Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behavior. Nature Rev Neurosci April 7: 380‒393

    Article  CAS  Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Drabant EM et al (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci 8: 828‒834

    Article  PubMed  CAS  Google Scholar 

  • Prather MD, Lavenex P, Mauldin-Jourdain ML et al (2001) Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106(4): 653–658

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57(12): 1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Scourfield J, Martin N, Lewis G, McGuffin P (1999) Heritability of social cognitive skills in children and adolescents. Br J Psychiatry 175: 559–564

    Article  PubMed  CAS  Google Scholar 

  • Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival. Science 302(5648): 1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303(5661): 1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Stein MB, Goldin PR, Sareen J et al (2002) Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch Gen Psychiatry 59(11): 1027–1034

    Article  PubMed  Google Scholar 

  • Stone VE, Baron-Cohen S, Knight RT (1998) Frontal lobe contributions to theory of mind. J Cogn Neurosci 10(5): 640–656

    Article  PubMed  CAS  Google Scholar 

  • Tager-Flusberg H, Sullivan K (2000) A componential view of theory of mind: evidence from Williams syndrome. Cognition 76(1): 59–90

    Article  PubMed  CAS  Google Scholar 

  • Tost H, Meyer-Lindenberg A, Ruf M et al (2005) [One decade of functional imaging in schizophrenia research]. Von der Abbildung einfacher Informationsverarbeitungsprozesse zur molekulargenetisch orientierten Bildgebung. Radiologe 45(2): 113–123

    Article  PubMed  CAS  Google Scholar 

  • Zhou WX, Sornette D, Hill RA, Dunbar RI (2005) Discrete hierarchical organization of social group sizes. Proc Biol Sci 272(1561): 439–444

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Meyer-Lindenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Lindenberg, A. (2012). Neuronale Mechanismen sozialer Kognition unter genetischem Einfluss. In: Förstl, H. (eds) Theory of Mind. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24916-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24916-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24915-0

  • Online ISBN: 978-3-642-24916-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics