Skip to main content

Compressive Rendering of Multidimensional Scenes

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7082))

Abstract

Recently, we proposed the idea of using compressed sensing to reconstruct the 2D images produced by a rendering system, a process we called compressive rendering. In this work, we present the natural extension of this idea to multidimensional scene signals as evaluated by a Monte Carlo rendering system. Basically, we think of a distributed ray tracing system as taking point samples of a multidimensional scene function that is sparse in a transform domain. We measure a relatively small set of point samples and then use compressed sensing algorithms to reconstruct the original multidimensional signal by looking for sparsity in a transform domain. Once we reconstruct an approximation to the original scene signal, we can integrate it down to a final 2D image which is output by the rendering system. This general form of compressive rendering allows us to produce effects such as depth-of-field, motion blur, and area light sources, and also renders animated sequences efficiently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veach, E.: Robust monte carlo methods for light transport simulation. PhD thesis, Stanford University, Stanford, CA, USA (1998); Adviser-Leonidas J. Guibas

    Google Scholar 

  2. Dutré, P., Bala, K., Bekaert, P., Shirley, P.: Advanced Global Illumination. AK Peters Ltd.,Wellesley (2006)

    Google Scholar 

  3. Jensen, H.W.: Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick (2001)

    Book  MATH  Google Scholar 

  4. Sen, P., Darabi, S.: Compressive rendering: A rendering application of compressed sensing. IEEE Transactions on Visualization and Computer Graphics 17, 487–499 (2011)

    Article  Google Scholar 

  5. Sen, P., Darabi, S.: Compressive estimation for signal integration in rendering. In: Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering (EGSR) 2010), vol. 29, pp. 1355–1363 (2010)

    Google Scholar 

  6. Sen, P., Darabi, S.: Exploiting the sparsity of video sequences to efficiently capture them. In: Magnor, M., Cremers, D., Zelnik-Manor, L. (eds.) Dagstuhl Seminar on Computational Video (2010)

    Google Scholar 

  7. Sen, P., Darabi, S.: Details and implementation for compressive estimation for signal integration in rendering. Technical Report EECE-TR-10-0003, University of New Mexico (2010)

    Google Scholar 

  8. Schröder, P.: Wavelets in computer graphics. Proceedings of the IEEE 84, 615–625 (1996)

    Article  Google Scholar 

  9. Schröder, P., Sweldens, W.: Wavelets in computer graphics. In: SIGGRAPH 1996 Course Notes (1996)

    Google Scholar 

  10. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications. Morgan Kaufmann Publishers Inc., San Francisco (1996)

    Google Scholar 

  11. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, London (1999)

    MATH  Google Scholar 

  12. Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. SIGGRAPH Comput. Graph 25, 197–206 (1991)

    Article  Google Scholar 

  13. Gortler, S.J., Schröder, P., Cohen, M.F., Hanrahan, P.: Wavelet radiosity. In: SIGGRAPH 1993, pp. 221–230 (1993)

    Google Scholar 

  14. Lischinski, D., Tampieri, F., Greenberg, D.P.: Combining hierarchical radiosity and discontinuity meshing. In: SIGGRAPH, pp. 199–208 (1993)

    Google Scholar 

  15. Schröder, P., Gortler, S.J., Cohen, M.F., Hanrahan, P.: Wavelet projections for radiosity. Computer Graphics Forum 13 (1994)

    Google Scholar 

  16. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH (2001)

    Google Scholar 

  17. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH, pp. 527–536 (2002)

    Google Scholar 

  18. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph 22, 376–381 (2003)

    Article  Google Scholar 

  19. Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. In: SIGGRAPH, pp. 477–487 (2004)

    Google Scholar 

  20. Malzbender, T.: Fourier volume rendering. ACM Trans. Graph 12, 233–250 (1993)

    Article  MATH  Google Scholar 

  21. Totsuka, T., Levoy, M.: Frequency domain volume rendering. In: SIGGRAPH, pp. 271–278 (1993)

    Google Scholar 

  22. Gross, M.H., Lippert, L., Dittrich, R., Häring, S.: Two methods for wavelet-based volume rendering. Computers and Graphics 21, 237–252 (1997)

    Article  Google Scholar 

  23. Bolin, M., Meyer, G.: A frequency based ray tracer. In: SIGGRAPH 1995: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–418 (1995)

    Google Scholar 

  24. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  25. Whitted, T.: An improved illumination model for shaded display. Communications of the ACM 23, 343–349 (1980)

    Article  Google Scholar 

  26. Mitchell, D.P.: Generating antialiased images at low sampling densities. In: SIGGRAPH, pp. 65–72 (1987)

    Google Scholar 

  27. Walter, B., Drettakis, G., Parker, S.: Interactive rendering using the render cache. In: Lischinski, D., Larson, G. (eds.) Proceedings of the 10th Eurographics Workshop on Rendering, vol. 10, pp. 235–246. Springer-Verlag/Wien, New York, NY (1999)

    Google Scholar 

  28. Tole, P., Pellacini, F., Walter, B., Greenberg, D.: Interactive global illumination in dynamic scenes. ACM Trans. Graph 21, 537–546 (2002)

    Article  Google Scholar 

  29. Pighin, F., Lischinski, D., Salesin, D.: Progressive previewing of ray-traced images using image plane disconinuity meshing. In: Proceedings of the Eurographics Workshop on Rendering 1997, pp. 115–125. Springer, London (1997)

    Google Scholar 

  30. Guo, B.: Progressive radiance evaluation using directional coherence maps. In: SIGGRAPH 1998: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 255–266. ACM, New York (1998)

    Chapter  Google Scholar 

  31. Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph 22, 631–640 (2003)

    Article  Google Scholar 

  32. Sen, P., Cammarano, M., Hanrahan, P.: Shadow silhouette maps. ACM Transactions on Graphics 22, 521–526 (2003)

    Article  Google Scholar 

  33. Sen, P.: Silhouette maps for improved texture magnification. In: HWWS 2004: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 65–73. ACM, New York (2004)

    Chapter  Google Scholar 

  34. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH 2000: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  35. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of ICIP, pp. 259–263 (1998)

    Google Scholar 

  36. Marvasti, F.: Nonuniform Sampling: Theory and Practice. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  37. Feichtinger, H., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marvasti, F., Liu, C., Adams, G.: Analysis and recovery of multidimensional signals from irregular samples using nonlinear and iterative techniques. Signal Process 36, 13–30 (1994)

    Article  MATH  Google Scholar 

  39. Gu, J., Nayar, S., Grinspun, E., Belhumeur, P., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 845–858. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Peers, P., Mahajan, D., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28, 1–18 (2009)

    Article  Google Scholar 

  41. Sen, P., Darabi, S.: Compressive Dual Photography. Computer Graphics Forum 28, 609–618 (2009)

    Article  Google Scholar 

  42. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Donoho, D.L.: Compressed sensing. IEEE Trans. on Information Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rice University Compressive Sensing Resources website (2009), http://www.dsp.ece.rice.edu/cs/

  45. Candès, E.J., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear programming. In: IEEE Symposium on Foundations of Computer Science, pp. 295–308 (2005)

    Google Scholar 

  46. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory 53, 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit (2007) (preprint)

    Google Scholar 

  48. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57, 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  49. Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. on Information Theory 52, 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engineers 37, 10–21 (1949)

    MathSciNet  Google Scholar 

  51. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47, 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2001)

    Google Scholar 

  53. LuxRender (2009), http://www.luxrender.net/

  54. Dunbar, D., Humphreys, G.: A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 503–508 (2006)

    Article  Google Scholar 

  55. Intel Math Kernel Library (2009), http://www.intel.com/

  56. Stanford Systems Optimization Laboratory software website (2009), http://www.stanford.edu/group/SOL/software/lsqr.html

  57. Tsaig, Y., Donoho, D.L.: Extensions of compressed sensing. Signal Process 86, 549–571 (2006)

    Article  MATH  Google Scholar 

  58. Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image Compression Fundamentals, Standards and Practice. Springer, Heidelberg (2001)

    Google Scholar 

  59. Alper, E., Mavinkurve, S.: Image inpainting implementation (2002), http://www.eecs.harvard.edu/~sanjay/inpainting/

  60. Painter, J., Sloan, K.: Antialiased ray tracing by adaptive progressive refinement. SIGGRAPH Comput. Graph. 23, 281–288 (1989)

    Article  Google Scholar 

  61. Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 137–145 (1984)

    Article  Google Scholar 

  62. Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K., Humphreys, G., Zwicker, M., Jensen, H.W.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 1–10 (2008)

    Google Scholar 

  63. Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. 28, 1–12 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sen, P., Darabi, S., Xiao, L. (2011). Compressive Rendering of Multidimensional Scenes. In: Cremers, D., Magnor, M., Oswald, M.R., Zelnik-Manor, L. (eds) Video Processing and Computational Video. Lecture Notes in Computer Science, vol 7082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24870-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24870-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24869-6

  • Online ISBN: 978-3-642-24870-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics