Renal Cancer Cell Classification Using Generative Embeddings and Information Theoretic Kernels

  • Manuele Bicego
  • Aydın Ulaş
  • Peter Schüffler
  • Umberto Castellani
  • Vittorio Murino
  • André Martins
  • Pedro Aguiar
  • Mario Figueiredo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7036)


In this paper, we propose a hybrid generative/discriminative classification scheme and apply it to the detection of renal cell carcinoma (RCC) on tissue microarray (TMA) images. In particular we use probabilistic latent semantic analysis (pLSA) as a generative model to perform generative embedding onto the free energy score space (FESS). Subsequently, we use information theoretic kernels on these embeddings to build a kernel based classifier on the FESS. We compare our results with support vector machines based on standard linear kernels and RBF kernels; and with the nearest neighbor (NN) classifier based on the Mahalanobis distance using a diagonal covariance matrix. We conclude that the proposed hybrid approach achieves higher accuracy, revealing itself as a promising approach for this class of problems.


Support Vector Machine Renal Cell Carcinoma Renal Cancer Cell Near Neighbor Latent Dirichlet Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bicego, M., Lovato, P., Ferrarini, A., Delledonne, M.: Biclustering of expression microarray data with topic models. In: Proceedings of the International Conference on Pattern Recognition, pp. 2728–2731 (2010)Google Scholar
  2. 2.
    Bicego, M., Lovato, P., Oliboni, B., Perina, A.: Expression microarray classification using topic models. In: ACM Symposium on Applied Computing (Bioinformatics and Computational Biology track) (2010)Google Scholar
  3. 3.
    Bicego, M., Perina, A., Murino, V., Martins, A., Aguiar, P., Figueiredo, M.: Combining free energy score spaces with information theoretic kernels: Application to scene classification. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2661–2664 (2010)Google Scholar
  4. 4.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  5. 5.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene Classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)Google Scholar
  7. 7.
    Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)CrossRefGoogle Scholar
  8. 8.
    Castellani, U., Perina, A., Murino, V., Bellani, M., Brambilla, P.: Brain morphometry by probabilistic latent semantic analysis. In: International Conference on Medical Image Computing and Computer Assisted Intervention (2010)Google Scholar
  9. 9.
    Cristani, M., Perina, A., Castellani, U., Murino, V.: Geo-located image analysis using latent representations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  10. 10.
    Fuchs, T., Wild, P., Moch, H., Buhmann, J.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: International Conference on Medical Image Computing and Computer Assisted Intervention (2008)Google Scholar
  11. 11.
    Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1-2), 177–196 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)Google Scholar
  13. 13.
    Kononen, J., Bubendorf, L., Kallionimeni, A., Bärlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M., Sauter, G., Kallionimeni, O.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Medicine 4, 844–847 (1998)CrossRefGoogle Scholar
  14. 14.
    Lasserre, J., Bishop, C., Minka, T.: Principled hybrids of generative and discriminative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York (2006)Google Scholar
  15. 15.
    Martins, A., Smith, N., Xing, E., Aguiar, P., Figueiredo, M.: Nonextensive information theoretic kernels on measures. Journal of Machine Learning Research 10, 935–975 (2009)zbMATHGoogle Scholar
  16. 16.
    Martins, A.F.T., Bicego, M., Murino, V., Aguiar, P.M.Q., Figueiredo, M.A.T.: Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 463–472. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Ng, A., Jordan, M.: On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes. In: Advances in Neural Information Processing Systems (2002)Google Scholar
  18. 18.
    Perina, A., Cristani, M., Castellani, U., Murino, V., Jojic, N.: Free energy score space. In: Advances in Neural Information Processing Systems (2009)Google Scholar
  19. 19.
    Perina, A., Cristani, M., Castellani, U., Murino, V., Jojic, N.: A hybrid generative/discriminative classification framework based on free-energy terms. In: Proceedings of the International Conference on Computer Vision (2009)Google Scholar
  20. 20.
    Rubinstein, Y.D., Hastie, T.: Discriminative vs informative learning. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp. 49–53. AAAI Press (1997)Google Scholar
  21. 21.
    Schüffler, P.J., Fuchs, T.J., Ong, C.S., Roth, V., Buhmann, J.M.: Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 202–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Schüffler, P., Ulaş, A., Castellani, U., Murino, V.: A multiple kernel learning algorithm for cell nucleus classification of renal cell carcinoma. In: Proceedings of the 16th International Conference on Image Analysis and Processing (2011)Google Scholar
  23. 23.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)Google Scholar
  24. 24.
    Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.R.: A new discriminative kernel from probabilistic models. Neural Computation 14, 2397–2414 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuele Bicego
    • 1
  • Aydın Ulaş
    • 1
  • Peter Schüffler
    • 2
  • Umberto Castellani
    • 1
  • Vittorio Murino
    • 1
    • 3
  • André Martins
    • 4
    • 6
  • Pedro Aguiar
    • 5
    • 6
  • Mario Figueiredo
    • 4
    • 6
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Department of Computer ScienceETH ZürichZürichSwitzerland
  3. 3.Istituto Italiano di TecnologiaGenovaItaly
  4. 4.Instituto de TelecomunicaçõesLisboaPortugal
  5. 5.Instituto de Sistemas e RobóticaLisboaPortugal
  6. 6.Instituto Superior TécnicoTechnical University of LisbonPortugal

Personalised recommendations