Pattern Recognition in High-Content Cytomics Screens for Target Discovery - Case Studies in Endocytosis

  • Lu Cao
  • Kuan Yan
  • Leah Winkel
  • Marjo de Graauw
  • Fons J. Verbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7036)

Abstract

Finding patterns in time series of images requires dedicated approaches for the analysis, in the setup of the experiment, the image analysis as well as in the pattern recognition. The large volume of images that are used in the analysis necessitates an automated setup. In this paper, we illustrate the design and implementation of such a system for automated analysis from which phenotype measurements can be extracted for each object in the analysis. Using these measurements, objects are characterized into phenotypic groups through classification while each phenotypic group is analyzed individually. The strategy that is developed for the analysis of time series is illustrated by a case study on EGFR endocytosis. Endocytosis is regarded as a mechanism of attenuating epidermal growth factor receptor (EGFR) signaling and of receptor degradation. Increasingly, evidence becomes available showing that cancer progression is associated with a defect in EGFR endocytosis. Functional genomics technologies combine high-throughput RNA interference with automated fluorescence microscopy imaging and multi-parametric image analysis, thereby enabling detailed insight into complex biological processes, like EGFR endocytosis. The experiments produce over half a million images and analysis is performed by automated procedures. The experimental results show that our analysis setup for high-throughput screens provides scalability and robustness in the temporal analysis of an EGFR endocytosis model.

Keywords

phenotype measurement image analysis classification EGFR endocytosis 

References

  1. 1.
    Collinet, C., Stöter, M., Bradshaw, C.R., Samusik, N., Rink, J.C., Kenski, D., et al.: Systems survey of endocytosis by multiparametric image analysis. Nature 464, 24–249 (2010)CrossRefGoogle Scholar
  2. 2.
    Damiano, L., Le Dévédec, S., Di Stefano, P., Repetto, D., Lalai, R., Truong, H., Xiong, J.L., Danen, E.H., Yan, K., Verbeek, F.J., Attanasio, F., Buccione, R., van de Water, B., Defilippi, P.: p140Cap suppresses the invasive properties of highly metastatic MTLn3-EGFR cells via paired cortactin phosphorylation. Oncogene 30 (2011)Google Scholar
  3. 3.
    Devroye L, Lugosi G.: A probabilistic theory of pattern recognition (1999) Google Scholar
  4. 4.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1990)Google Scholar
  5. 5.
    Galvez, T., Teruel, M.N., Heo, W.D., Jones, J.T., Kim, M.L., Liou, J., et al.: siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake. Genome Biology 8(7), 142 (2007)CrossRefGoogle Scholar
  6. 6.
    Ghosh, R.N., DeBiasio, R., Hudson, C.C., Ramer, E.R., Cowan, C.L., Oakley, R.: Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor technology. Journal of biomolecular screening: the official journal of the Society for Biomolecular Screening 10(5), 47–84 (2005)CrossRefGoogle Scholar
  7. 7.
    Hu, M.K.: Visual pattern recognition by moment invariants. Information Theory 8(2), 179–187 (1962)MATHCrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Duin, P.W.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  9. 9.
    Jarque, C.M., Bera, A.K.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6(3), 255–259 (1980)CrossRefGoogle Scholar
  10. 10.
    Land, A.H., Doig, A.G.: An Automatic Method of Solving Discrete Programming Problems. Econometrica 28(3), 497–520 (1960)MATHCrossRefGoogle Scholar
  11. 11.
    Le Dévédec, S., Yan, K., de Bont, H., Ghotra, V., Truong, H., Danen, E., Verbeek, F.J., van de Water, B.: Systems microscopy approaches to understand cancer cell migration and metastasis. Science 67(19), 3219–3240 (2010)Google Scholar
  12. 12.
    Li, H., Ung, C.Y., Ma, X.H., Li, B.W., Low, B.C., Cao, Z.W., et al.: Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. Bioinformatics (Oxford, England) 25(3), 358–364 (2009)CrossRefGoogle Scholar
  13. 13.
    Lilliefors, H.W.: On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of the American Statistical Association 64, 38–389 (1969)Google Scholar
  14. 14.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India 2, 49–55 (1936)MATHGoogle Scholar
  15. 15.
    Massey, F.J.: The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association 46(253), 68–78 (1951)MATHCrossRefGoogle Scholar
  16. 16.
    Mitchell, T.: Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression (2005)Google Scholar
  17. 17.
    Okun, O.: Feature Normalization and Selection for Protein Fold Recognition. In: Proc. of the 11th Finnish Artificial Intelligence Conference, pp. 207–221 (2004)Google Scholar
  18. 18.
    Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., et al.: Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436(7047), 78–86 (2005)CrossRefGoogle Scholar
  19. 19.
    Qin, Y., Stokman, G., Yan, K., Ramaiahgari, S., Verbeek, F.J., de Graauw, M., van de Water, B., Price, L.: Cyclic AMP signalling protects proximal tubular epithelial cells from cisplatin-induced apoptosis via activation of Epac. British Journal of Pharmacology (in Press, 2011)Google Scholar
  20. 20.
    Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, Deurs B van.: Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochemistry and cell biology. 129(5):563–78(2008) CrossRefGoogle Scholar
  21. 21.
    Tarcic, G., Boguslavsky, S.K., Wakim, J., Kiuchi, T., Liu, A., Reinitz, F., et al.: An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Current Biology 19(21), 88–98 (2009)CrossRefGoogle Scholar
  22. 22.
    Ung, C.Y., Li, H., Ma, X.H., Jia, J., Li, B.W., Low, B.C., et al.: Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Letters 582(15), 2283–2290 (2008)CrossRefGoogle Scholar
  23. 23.
    Yan K, Verbeek FJ.: Watershed Masked Clustering Segmentation in High-throughput Image Analysis (submitted, 2011) Google Scholar
  24. 24.
    Yan, K., Le Dévédec, S., van de Water, B., Verbeek, F.J.: Cell Tracking and Data Analysis of in Vitro Tumour Cells from Time-lapse Image Sequences. In: VISSAPP, vol. 1, pp. 281–286 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lu Cao
    • 1
  • Kuan Yan
    • 1
  • Leah Winkel
    • 2
  • Marjo de Graauw
    • 2
  • Fons J. Verbeek
    • 1
  1. 1.Imaging & BioInformatics, Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands
  2. 2.Toxicology, Leiden Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands

Personalised recommendations