Advertisement

Shape Matching by Localized Calculations of Quasi-Isometric Subsets, with Applications to the Comparison of Protein Binding Patches

  • Frédéric Cazals
  • Noël Malod-Dognin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7036)

Abstract

Given a protein complex involving two partners, the receptor and the ligand, this paper addresses the problem of comparing their binding patches, i.e. the sets of atoms accounting for their interaction. This problem has been classically addressed by searching quasi-isometric subsets of atoms within the patches, a task equivalent to a maximum clique problem, a NP-hard problem, so that practical binding patches involving up to 300 atoms cannot be handled.

We extend previous work in two directions. First, we present a generic encoding of shapes represented as cell complexes. We partition a shape into concentric shells, based on the shelling order of the cells of the complex. The shelling order yields a shelling tree encoding the geometry and the topology of the shape. Second, for the particular case of cell complexes representing protein binding patches, we present three novel shape comparison algorithms. These algorithms combine a Tree Edit Distance calculation (TED) on shelling trees, together with Edit operations respectively favoring a topological or a geometric comparison of the patches. We show in particular that the geometric TED calculation strikes a balance, in terms of accuracy and running time, between purely geometric and topological comparisons, and we briefly comment on the biological findings reported in a companion paper.

Keywords

Protein 3D-structure comparison maximum clique tree-edit-distance 

References

  1. 1.
    Gibrat, J.F., Madej, T., Bryant, S.: Surprising similarities in structure comparison. Current Opinion in Structural Biology 6, 377–385 (1996)CrossRefGoogle Scholar
  2. 2.
    Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate pair-wise and multiple alignments of protein structures. In: ISMB 1996 Proceedings, pp. 59–67 (1996)Google Scholar
  3. 3.
    Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 34(5), 827–828 (1978)CrossRefGoogle Scholar
  4. 4.
    Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology 223, 123–138 (1993)CrossRefGoogle Scholar
  5. 5.
    Godzik, A., Skolnick, J.: Flexible algorithm for direct multiple alignment of protein structures and seequences. CABIOS 10, 587–596 (1994)Google Scholar
  6. 6.
    Malod-Dognin, N., Andonov, R., Yanev, N.: Maximum clique in protein structure comparison. In: International Symposium on Experimental Algorithms, pp. 106–117 (2010)Google Scholar
  7. 7.
    Janin, J., Bahadur, R.P., Chakrabarti, P.: Protein-protein interaction and quaternary structure. Quarterly reviews of biophysics 41(2), 133–180 (2008)CrossRefGoogle Scholar
  8. 8.
    Douguet, D.: Ligand-based approaches in virtual screening. Current Computer-Aided Drug Design 4, 180–190 (2008)CrossRefGoogle Scholar
  9. 9.
    Brint, A., Willett, P.: Algorithms for the identification of three-dimensional maximal common substructures. J. of Chemical Information and Computer Sciences 27(4) (1987)Google Scholar
  10. 10.
    Norel, R., et al.: Shape Complementarity at Protein-Protein Interfaces. Biopolymers 34 (1994)Google Scholar
  11. 11.
    Ritchie, D., Kemp, G.: Protein docking using spherical polar Fourier correlations. Proteins 39(2) (2000)Google Scholar
  12. 12.
    Katchalski-Katzir, E., et al.: Molecular Surface Recognition: Determination of Geometric Fit Between Proteins and Their Ligands by Correlation Techniques. PNAS 89 (1992)Google Scholar
  13. 13.
    Bille, P.: A survey on tree edit distance and related problems. TCS 337(1-3) (2005)Google Scholar
  14. 14.
    Cazals, F., Pouget, M.: Differential topology and geometry of smooth embedded surfaces: selected topics. Int. J. of Computational Geometry and Applications 15(5) (2005)Google Scholar
  15. 15.
    Siddiqi, K., Shokoufanded, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  16. 16.
    Chazal, F., Lieutier, A.: The λ-medial axis. Graphical Models 67(4), 304–331 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Loriot, S., Cazals, F.: Modeling Macro-Molecular Interfaces with Intervor. Bioinformatics 26(7) (2010)Google Scholar
  19. 19.
    Akkiraju, N., Edelsbrunner, H.: Triangulating the surface of a molecule. Discrete Applied Mathematics 71(1), 5–22 (1996)CrossRefzbMATHGoogle Scholar
  20. 20.
    Castro, P.M.M.D., Cazals, F., Loriot, S., Teillaud, M.: Design of the cgal spherical kernel and application to arrangements of circles on a sphere. Computational Geometry: Theory and Applications 42(6-7), 536–550 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Tarjan, R.E.: Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44. Society for Industrial and Applied Mathematics, Philadelphia (1983)CrossRefzbMATHGoogle Scholar
  22. 22.
    Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
  23. 23.
    Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations 6 (1972)Google Scholar
  24. 24.
    Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120(1-3) (2002)Google Scholar
  25. 25.
    Chen, R., et al.: A protein-protein docking benchmark. Proteins 52 (2003)Google Scholar
  26. 26.
    Chakrabarti, P., Janin, J.: Dissecting protein-protein recognition sites. Proteins 47(3), 334–343 (2002)CrossRefGoogle Scholar
  27. 27.
    Jones, S., Thornton, J.: Principles of protein-protein interactions. PNAS 93(1), 13–20 (1996)CrossRefGoogle Scholar
  28. 28.
    Keskin, O., Nussinov, R.: Similar binding sites and different partners: Implications to shared proteins in cellular pathways. Structure 15(3), 341–354 (2007)CrossRefGoogle Scholar
  29. 29.
    Konc, J., Janezic, D.: ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9) (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frédéric Cazals
    • 1
  • Noël Malod-Dognin
    • 1
  1. 1.INRIA Sophia Antipolis - MéditerranéeFrance

Personalised recommendations