Skip to main content

Pricing Exotic Derivatives Using Regret Minimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6982))

Abstract

We price various financial instruments, which are classified as exotic options, using the regret bounds of an online algorithm. In addition, we derive a general result, which upper bounds the price of any derivative whose payoff is a convex function of the final asset price. The market model used is adversarial, making our price bounds robust. Our results extend the work of [9], which used regret minimization to price the standard European call option, and demonstrate the applicability of regret minimization to derivative pricing.

This research was supported in part by the Google Inter-university center for Electronic Markets and Auctions, by a grant from the Israel Science Foundation, by a grant from United States-Israel Binational Science Foundation (BSF), and by a grant from the Israeli Ministry of Science (MoS). This work is part of Ph.D. thesis research carried out by the first author at Tel Aviv University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, A., Kalai, A.: Universal portfolios with and without transaction costs. Machine Learning 35(3), 193–205 (1999); special issue for COLT 1997

    Article  MATH  Google Scholar 

  3. Borodin, A., El-Yaniv, R., Gogan, V.: Can we learn to beat the best stock. Journal of Artificial Intelligence Research 21, 579–594 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in option prices. Journal of Business 51(4), 621–651 (1978)

    Article  Google Scholar 

  5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  6. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with expert advice. Machine Learning 66(2-3), 321–352 (2007)

    Article  MATH  Google Scholar 

  7. Cover, T.M.: Universal portfolios. Mathematical Finance 1(1), 1–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cover, T.M., Ordentlich, E.: Universal portfolios with side information. IEEE Transactions on Information Theory 42(2), 348–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeMarzo, P., Kremer, I., Mansour, Y.: Online trading algorithms and robust option pricing. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 477–486. ACM, New York (2006)

    Google Scholar 

  10. Györfi, L., Lugosi, G., Udina, F.: Nonparametric kernel-based sequential investment strategies. Mathematical Finance 16(2), 337–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hazan, E., Kale, S.: On stochastic and worst-case models for investing. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 709–717 (2009)

    Google Scholar 

  12. Helmbold, D.P., Schapire, R.E., Singer, Y., Warmuth, M.K.: On-line portfolio selection using multiplicative updates. In: Proc. 13th International Conference on Machine Learning, pp. 243–251. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  13. Kalai, A., Vempala, S.: Efficient algorithms for universal portfolios. Journal of Machine Learning Research 3, 423–440 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Merton, R.C.: Theory of rational option pricing. Bell Journal of Economics and Management Science 4(1), 141–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ordentlich, E., Cover, T.M.: The cost of achieving the best portfolio in hindsight. Mathematics of Operations Research 23(4), 960–982 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Singer, Y.: Switching portfolios. In: UAI, pp. 488–495 (1998)

    Google Scholar 

  17. Vovk, V., Watkins, C.: Universal portfolio selection. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 12–23. ACM Press, New York (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gofer, E., Mansour, Y. (2011). Pricing Exotic Derivatives Using Regret Minimization. In: Persiano, G. (eds) Algorithmic Game Theory. SAGT 2011. Lecture Notes in Computer Science, vol 6982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24829-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24829-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24828-3

  • Online ISBN: 978-3-642-24829-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics