Skip to main content

Neue Eigenschaften transgener Pflanzen

  • Chapter
  • First Online:
Gentechnik bei Pflanzen

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6435 Accesses

Abstract

Wie schon der kurze historische Überblick in Kap. 1 gezeigt hat, gibt es mittlerweile eine große Zahl von Anwendungen für transgene Nutzpflanzen mit verbesserten bzw. veränderten Eigenschaften. Alle Möglichkeiten hier aufzuführen, würde den Rahmen dieses Buches bei Weitem sprengen. Daher war es nötig, eine Auswahl zu treffen, und auch bei den einzelnen Unterpunkten konnte nicht jeder Aspekt Berücksichtigung finden. Dennoch werden die wichtigsten Entwicklungen gewürdigt und auch Arbeiten im Planungsstadium berücksichtigt. Angaben zu Freisetzungen und kommerzieller Verwendung sind, sofern nicht anders angegeben, in Kap. 5 zu finden. Eine Beurteilung transgener Pflanzen hinsichtlich potenzieller oder tatsächlicher Risiken ist Kap. 6 zu entnehmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10: 594–602

    Article  PubMed  CAS  Google Scholar 

  • Al-Babili S, Beyer P (2005) Golden rice – five years on the road – five years to go? Trends Plant Sci 10: 565–573

    Article  PubMed  CAS  Google Scholar 

  • Alexandratos N (1999) World food and agriculture: Outlook for the medium and longer term. Proc Natl Acad Sci USA 96: 5908–5914

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Phillips J (2010) Drought Stress Tolerance. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 139–157

    Google Scholar 

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54: 549–567

    Article  PubMed  CAS  Google Scholar 

  • Chapple C, Carpita N (1998) Plant cell walls as targets for biotechnology. Curr Opin Plant Biol 1: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Sadava DE (1994) Plants, Genes and Agriculture. Jones & Bartlett, London

    Google Scholar 

  • Dempsey DA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2007) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6: 135–145

    Article  PubMed  Google Scholar 

  • Esser K (2000) Kryptogamen 1. Cyanobakterien Algen Pilze Flechten. 3. Aufl. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Finer JJ (1999) Plant protein secretion on tap. Nature Biotechnol 17: 427

    Article  CAS  Google Scholar 

  • Giuliano G, Aquilani R, Dharmapuri S (2000) Metabolie engineering of plant carotenoids. Trends Plant Sci 5: 406–409

    Article  PubMed  CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG et al. (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96: 5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Franke W (1997) Nutzpflanzenkunde, 6. Aufl. Thieme, Suttgart

    Google Scholar 

  • Heldt HW, Piechulla B (2008) Pflanzenbiochemie, Spektrum, Heidelberg

    Google Scholar 

  • Helemans A (1999) New genes boost rice nutrients. Science 285: 994–995

    Article  Google Scholar 

  • Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Science 8: 6–8

    Article  CAS  Google Scholar 

  • Hühns M, Broer I (2010) Biopolymers. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 237–252

    Google Scholar 

  • James CA, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 2: 237–241

    Article  Google Scholar 

  • Kempken F (1997) Biotechnology with plants – an overview. Prog Botany 58: 428–440

    CAS  Google Scholar 

  • Kempken F (2010) Engineered male sterility. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 253–265

    Google Scholar 

  • Kempken F, Jung C (2010) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York (eds) [mit mehreren Einzelartikeln zu verschiedenen Teilaspekten dieses Kapitels]

    Google Scholar 

  • Kempken F, Pring DR (1999) Male sterility in higher plants – fundamentals and applications. Prog Botany 60: 139–166

    Article  CAS  Google Scholar 

  • Kishore GM, Shewmaker C (1999) Biotechnology: Enhancing human nutrition in developing and developed worlds. Proc Natl Acad Sei USA 96: 5968–5972

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27: 799–810

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis – the basis for metabolic engineering of medical plants. Plant Cell 7: 1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Ma JK-C, Vine ND (1999) Plant expression systems for the production of vaccines. Curr Top Microbiol Immunol 236: 275–292

    Article  PubMed  Google Scholar 

  • Ma JK-C, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals – the road forward. Trends Plant Science 10: 580–585

    Article  Google Scholar 

  • Miflin B, Napier J, Shewry P (1999) Improving plant product quality. Nature Biotechnol 17 Suppl: BV13–14

    Article  Google Scholar 

  • Momma K, Hashimoto W, Ozawa S et al. (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: Analysis of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63: 314–318

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (1999) Production of novel oils in plants. Curr Opin Biotechnol 10: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Odenbach W (1997) Biologische Grundlagen der Pflanzenzüchtung. Parey, Berlin, Hamburg

    Google Scholar 

  • Owen MDK (2010) Herbicide resistance. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 159–176

    Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23: 482–487

    Article  PubMed  CAS  Google Scholar 

  • Prescott VE, Campbell PM, Moore A et al. (2005) Transgenic expression of bean a-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53: 9023–9030

    Article  PubMed  CAS  Google Scholar 

  • Renneberg R (2009) Biotechnologie für Einsteiger, 3. Aufl. Spektrum, Heidelberg

    Book  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Lab Press

    Google Scholar 

  • Schillberg S, Henke M, Fischer R (2000) Produktion rekombinanter Proteine durch 'Molekulares Farming'. BioTec 5: 18–20

    Google Scholar 

  • Schiermeyer A, Schillberg S (2010) Pharmaceuticals. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 221–235

    Google Scholar 

  • Schlösser E (1997) Allgemeine Phytopathologie, 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Shitan N, Yazaki K (2007) Accumulation and membrane transport of plant alkaloids. Curr Pharm Biotechnol 8: 244–252

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annu Rev Plant Physiol Plant Mol Biol 46: 341–368

    Article  CAS  Google Scholar 

  • Stockmeyer K, Kempken F (2005) Engineered male sterility in plant hybrid breeding. Prog Bot 67: 178–187

    Article  Google Scholar 

  • Tanaka Y, Tsuda S, Kusumi T (1998) Metabolie engineering to modify flower color. Plant Cell Physiol 39: 1119–1126

    CAS  Google Scholar 

  • Thurau T, Ye W, Cai D (2010) Insect and nematode resistance. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 177–197

    Google Scholar 

  • Voll LM, Börnke F (2010) Metabolic engineering. In: Kempken F, Jung C (eds) Genetic Modification of Plants – Agriculture, Horticulture and Forestry. Springer, Berlin Heidelberg New York, pp 199–219

    Google Scholar 

  • Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants. Appl Microbiol Biotechnol, DOI 10.1007/s00253-011–3449-2

    Google Scholar 

  • Welch RM,Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55: 353–364

    Article  PubMed  CAS  Google Scholar 

  • Wilkes D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl Microbiol Biotechnol 52: 135–145

    Article  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medical plants: Transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sei USA 89: 11799–11803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kempken .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kempken, F., Kempken, R. (2012). Neue Eigenschaften transgener Pflanzen. In: Gentechnik bei Pflanzen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24818-4_4

Download citation

Publish with us

Policies and ethics