Skip to main content

Curvature Minimization for Surface Reconstruction with Features

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

A new surface reconstruction method is proposed based on graph cuts and local swap. We novelly integrate a curvature based variational model and Delaunay based tetrahedral mesh framework. The minimization task is performed by graph cuts and local swap sequentially. The proposed method could reconstruct surfaces with important features such as sharp edges and corners. Various numerical examples indicate the robustness and effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry 22(4), 481–504 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)

    Google Scholar 

  4. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 213–222. ACM, New York (2000)

    Chapter  Google Scholar 

  5. Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. Mathematical Methods for Curves and Surfaces, 1–14 (2010)

    Google Scholar 

  6. Bae, E., Shi, J., Tai, X.-C.: Graph cuts for curvature based image denoising. IEEE Transactions on Image Processing, November 1 (2010) (preprint) doi:10.1109/TIP.2010.2090533

    Google Scholar 

  7. Boykov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of Ninth IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  8. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1124–1137 (2004)

    Google Scholar 

  9. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Journal on Applied Mathematics, 564–592 (2002)

    Google Scholar 

  12. Cohen, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24(1) (1997)

    Google Scholar 

  13. Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: SM 2003: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 127–134 (2003)

    Google Scholar 

  14. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces I. Grundlehren der mathematischen Wissenschaften, vol. 295 (1992)

    Google Scholar 

  15. Franchini, E., Morigi, S., Sgallari, F.: Implicit shape reconstruction of unorganized points using PDE-based deformable 3D manifolds. Numerical Mathematics: Theory, Methods and Applications (2010)

    Google Scholar 

  16. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78 (1992)

    Google Scholar 

  17. Hornung, A., Kobbelt, L.: Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2006)

    Google Scholar 

  18. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: Geometry Processing 2006: Fourth Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, 2006, June 26-28, page 41, Eurographics (2006)

    Google Scholar 

  19. Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: CVPR, pp. 2993–3000 (2009)

    Google Scholar 

  20. Kolmogorov, V., Zabih, R., Gortler, S.: Generalized multi-camera scene reconstruction using graph cuts. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 501–516. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Lempitsky, V.S., Boykov, Y.: Global optimization for shape fitting. In: CVPR. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  22. Leung, S., Zhao, H.: A grid based particle method for evolution of open curves and surfaces. Journal of Computational Physics 228(20), 7706–7728 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics 3(7), 34–57 (2002)

    MATH  Google Scholar 

  24. Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and its Applications (1994)

    Google Scholar 

  25. Paris, S., Sillion, F.X., Quan, L.: A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision 66(2), 141–161 (2006)

    Article  Google Scholar 

  26. Solem, J.E., Kahl, F.: Surface reconstruction from the projection of points, curves and contours. In: 2nd Int. Symposium on 3D Data Processing, Visualization and Transmission, Thessaloniki, Greece (2004)

    Google Scholar 

  27. Solem, J.E., Kahl, F.: Surface reconstruction using learned shape models. Advances in Neural Information Processing Systems 17, 1 (2005)

    Google Scholar 

  28. Sormann, M., Zach, C., Bauer, J., Karner, K., Bishof, H.: Watertight multi-view reconstruction based on volumetric graph-cuts. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 393–402. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Tai, X.C., Hahn, J., Chung, G.J.: A Fast Algorithm For Euler’s Elastica Model Using Augmented Lagrangian Method. UCLA CAM Report 10-47 (2010)

    Google Scholar 

  30. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Transactions on Graphics 22(3), 445–452 (2003)

    Article  Google Scholar 

  31. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing: theory and applications. D.Reidel(1988)

    Google Scholar 

  32. Vogiatzis, G., Torr, P.H.S., Cipolla, R.: Multi-view stereo via volumetric graph-cuts. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2 (2005)

    Google Scholar 

  33. Wan, M., Wang, Y., Wang, D.: Variational surface reconstruction based on delaunay triangulation and graph cut. International Journal for Numerical Methods in Engineering 85, 206–229 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ye, J., Bresson, X., Goldstein, T., Osher, S.: A Fast Variational Method for Surface Reconstruction from Sets of Scattered Points. UCLA CAM Report (2010)

    Google Scholar 

  35. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM 2001), p. 194. IEEE Computer Society Press, Washington, DC (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, J., Wan, M., Tai, XC., Wang, D. (2012). Curvature Minimization for Surface Reconstruction with Features. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics