Skip to main content

Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Abstract

Finding optimal inpainting data plays a key role in the field of image compression with partial differential equations (PDEs). In this paper, we optimise the spatial as well as the tonal data such that an image can be reconstructed with minimised error by means of discrete homogeneous diffusion inpainting. To optimise the spatial distribution of the inpainting data, we apply a probabilistic data sparsification followed by a nonlocal pixel exchange. Afterwards we optimise the grey values in these inpainting points in an exact way using a least squares approach. The resulting method allows almost perfect reconstructions with only 5% of all pixels. This demonstrates that a thorough data optimisation can compensate for most deficiencies of a suboptimal PDE interpolant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. SIGGRAPH 2000, New Orleans, LI, pp. 417–424 (July 2000)

    Google Scholar 

  4. Bruckstein, A.M., Holt, R.J., Netravali, A.N.: Holographic representations of images. IEEE Transactions on Image Processing 7(11), 1583–1597 (1998)

    Article  Google Scholar 

  5. Carlsson, S.: Sketch based coding of grey level images. Signal Processing 15, 57–83 (1988)

    Article  Google Scholar 

  6. Di Blasi, G., Francomano, E., Tortorici, A., Toscano, E.: A smoothed particle image reconstruction method. Calcolo 48(1), 61–74 (2011), http://dx.doi.org/10.1007/s10092-010-0028-3

    Article  MATH  MathSciNet  Google Scholar 

  7. Elder, J.H.: Are edges incomplete? International Journal of Computer Vision 34(2/3), 97–122 (1999)

    Article  Google Scholar 

  8. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2–3), 255–269 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Hummel, R., Moniot, R.: Reconstructions from zero-crossings in scale space. IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 2111–2130 (1989)

    Article  Google Scholar 

  10. Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their toppoints in scale space. In: Proc. Eighth International Conference on Pattern Recognition, Paris, France, pp. 215–217 (October 1986)

    Google Scholar 

  11. Kanters, F.M.W., Lillholm, M., Duits, R., Janssen, B.J.P., Platel, B., Florack, L.M.J., ter Haar Romeny, B.M.: On image reconstruction from multiscale top points. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 431–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52(2/3), 73–95 (2003)

    Article  Google Scholar 

  13. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based image compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  14. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc.1998 IEEE International Conference on Image Processing, Chicago, IL, vol. 3, pp. 259–263 (October 1998)

    Google Scholar 

  15. Morton, K.W., Mayers, L.M.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  16. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  17. Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Computer Graphics Forum 29(8), 2313–2327 (2010)

    Article  Google Scholar 

  18. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Uhlir, K., Skala, V.: Reconstruction of damaged images using radial basis functions. In: Proc.13th European Signal Processing Conference (EUSIPCO), Antalya, Turkey, pp. 160–163 (September 2005)

    Google Scholar 

  20. Zeevi, Y., Rotem, D.: Image reconstruction from zero-crossings. IEEE Transactions on Acoustics, Speech, and Signal Processing 34, 1269–1277 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mainberger, M. et al. (2012). Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics