Skip to main content

Network Node Label Acquisition and Tracking

  • Conference paper
Progress in Artificial Intelligence (EPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7026))

Included in the following conference series:

Abstract

Complex networks are ubiquitous in real-world and represent a multitude of natural and artificial systems. Some of these networks are inherently dynamic and their structure changes over time, but only recently has the research community been trying to better characterize them. In this paper we propose a novel general methodology to characterize time evolving networks, analyzing the dynamics of their structure by labeling the nodes and tracking how these labels evolve. Node labeling is formulated as a clustering task that assigns a classification to each node according to its local properties. Association rule mining is then applied to sequences of nodes’ labels to extract useful rules that best describe changes in the network. We evaluate our method using two different networks, a real-world network of the world annual trades and a synthetic scale-free network, in order to uncover evolution patterns. The results show that our approach is valid and gives insights into the dynamics of the network. As an example, the derived rules for the scale-free network capture the properties of preferential node attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Yu, P.S.: Online analysis of community evolution in data streams. In: Proceedings of the 15th SIAM International Conference on Data Mining, Society for Industrial Mathematics page 56(2005)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: 11th International Conference on Data Engineering, page 3 (1995)

    Google Scholar 

  4. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54 (2006)

    Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Braha, D., Bar-Yam, Y.: Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social interactions. Adaptive Networks 51, 39–50 (2009)

    Article  Google Scholar 

  8. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules to correlations. ACM SIGMOD Record 26, 265–276 (1997)

    Article  Google Scholar 

  9. Costa, L.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. Advances In Physics 56, 167 (2007)

    Article  Google Scholar 

  10. Costa, L.F., Rodrigues, F.A., Hilgetag, C.C., Kaiser, M.: Beyond the average: detecting global singular nodes from local features in complex networks. EPL (Europhysics Letters) 87, 18008 (2009)

    Article  Google Scholar 

  11. Ferlez, J., Faloutsos, C., Leskovec, J., Mladenic, D., Grobelnik, M.: Monitoring network evolution using MDL. In: IEEE 24th International Conference on Data Engineering, pp. 1328–1330 (2008)

    Google Scholar 

  12. Gallagher, B., Eliassi-Rad, T.: Leveraging Label-Independent Features for Classification in Sparsely Labeled Networks: An Empirical Study. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) SNAKDD 2008. LNCS, vol. 5498, pp. 1–19. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gleditsch, K.S.: Expanded trade and GDP data. Journal of Conflict Resolution 46(5), 712 (2002)

    Article  Google Scholar 

  15. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Journal of the Royal Statistical Society C 28(1), 100–108 (1979)

    MATH  Google Scholar 

  16. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proceedings of the Third IEEE International Conference on Data Mining, ICDM 2003, pp. 549-552 (2003)

    Google Scholar 

  17. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proceedings of the 10th KDD (2004)

    Google Scholar 

  18. Johnson, R.A., Wichern, D.W.: Applied multivariate statistical analysis, vol. 5. Prentice Hall Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

  19. Juszczyszyn, K., Kazienko, P., Musial, K., Gabrys, B.: Temporal Changes in Connection Patterns of an Email-Based Social Network. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 9–12 (2008)

    Google Scholar 

  20. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the 3rd International Conference on Information and Knowledge Management, pp. 401–407 (1994)

    Google Scholar 

  21. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470 (2008)

    Google Scholar 

  22. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187 (2005)

    Google Scholar 

  23. Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study. The Journal of Machine Learning Research 8, 935–983 (2007)

    Google Scholar 

  24. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  25. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  26. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset. Journal of the American Statistical Association 98(463), 750–763 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 687–696 (2007)

    Google Scholar 

  28. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 374–383 (2006)

    Google Scholar 

  29. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726 (2007)

    Google Scholar 

  30. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: 18th Conference on Uncertainty in Artificial Intelligence, pp. 895–902 (2002)

    Google Scholar 

  31. Vanetik, N., Shimony, S.E., Gudes, E.: Support measures for graph data. Data Mining and Knowledge Discovery 13(2), 243–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2002, pp. 721–724 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choobdar, S., Silva, F., Ribeiro, P. (2011). Network Node Label Acquisition and Tracking. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24769-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24768-2

  • Online ISBN: 978-3-642-24769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics