A Short Introduction to Classical Cryptology as a Way to Motivate High School Students for Informatics

  • Lucia Keller
  • Barbara Scheuner
  • Giovanni Serafini
  • Björn Steffen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7013)


In Swiss high schools, programming is the typical content of an introductory informatics course. This is an important topic, but nevertheless it is only a part of the field. By integrating short introductions to other topics, students get a better understanding of the broadness of informatics.

This article presents such a short introduction unit about classical cryptology without requiring any school-related prior knowledge in informatics. The basis of this unit is the everlasting game between code designers and code breakers to build, respectively break, cryptosystems. The challenge of breaking the codes presented by the teacher is the core and motivating factor of our didactical concept. Although the theoretical concepts cannot be presented in detail, the unit demands analytical skills and encourages critical thinking.

The unit motivated 70% of the participating students to learn more about the topic, which is a good pre-condition for subsequent cryptology courses.


Code Designer Short Introduction Teaching Unit Insecure Channel Classical Cryptology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F.L.: Decrypted Secrets: Methods and Maxims of Cryptology, 4th edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Bell, T., Fellows, M., Witten, I.H.: Computer Science Unplugged - Off-line activities and games for all ages (1999),
  3. 3.
    Beutelspacher, A.: Cryptology. Mathematical Association of America, Washington, DC (1994)zbMATHGoogle Scholar
  4. 4.
    Bruss, D., Erdélyi, G., Meyer, T., Riege, T., Rothe, J.: Quantum cryptography: A survey. ACM Comput. Surv. 39 (July 2007)Google Scholar
  5. 5.
    Freiermuth, K., Hromkovic, J., Steffen, B.: Creating and testing textbooks for secondary schools. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 216–228. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B.: Einführung in die Kryptologie. Vieweg+Teubner (2009)Google Scholar
  7. 7.
    Hromkovič, J.: Sieben Wunder der Informatik. Vieweg+Teubner (2008)Google Scholar
  8. 8.
    Hromkovič, J.: Algorithmic Adventures. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Keller, L., Komm, D., Serafini, G., Sprock, A., Steffen, B.: Teaching public-key cryptography in school. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 112–123. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–38 (1883)Google Scholar
  11. 11.
    Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 161–191 (1883)Google Scholar
  12. 12.
    Koblitz, N.: Cryptography as a teaching tool. CRYPTOLOGIA: Cryptologia 21(4), 317–326 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Singh, S.: The Code Book. Doubleday (1999)Google Scholar
  14. 14.
    Wätjen, D.: Kryptographie. Springer, Heidelberg (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lucia Keller
    • 1
  • Barbara Scheuner
    • 1
  • Giovanni Serafini
    • 1
  • Björn Steffen
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations