Skip to main content

Peripheral Signals Modifying Food Reward

  • Chapter
  • First Online:
Appetite Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 209))

Abstract

The pleasure derived from eating may feel like a simple emotion, but the decision to eat, and perhaps more importantly what to eat, involves central pathways linking energy homeostasis and reward and their regulation by metabolic and endocrine factors. Evidence is mounting that modulation of the hedonic aspects of energy balance is under the control of peripheral neuropeptides conventionally associated with homeostatic appetite control. Here, we describe the significance of reward in feeding, the neural substrates underlying the reward pathway and their modification by peptides released into the circulation from peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-MSH:

α-Melanocyte-stimulating hormone

AgRP:

Agouti-related peptide

Amy:

Amygdala

ARC:

Arcuate nucleus

CCK:

Cholecystokinin

DR:

Dorsal raphe

GHS-R1A:

Growth hormone secretagogue receptor 1A

GIP:

Gastric inhibitory polypeptide

GLP-1:

Glucagon-like peptide 1

JAK-STAT:

Janus kinase-signal transducer and activator of transcription

LDTg:

Laterodorsal tegmental area

LH:

Lateral hypothalamus

NAcc:

Nucleus accumbens

NPY:

Neuropeptide Y

NTS:

Nucleus tractus solitarius

ObRb:

Leptin (ob) receptor b

OLETF:

Otsuka Long-Evans Tokushima fatty

OXT:

Oxytocin

PBn:

Parabrachial nucleus

PFC:

Prefrontal cortex

PVN:

Paraventricular nucleus

PYY:

Peptide YY

SON:

Supraoptic nucleus

V1aR:

Vasopressin receptor 1a

VPall:

Ventral pallidum

VTA:

Ventral tegmental area

References

  • Abete I, Astrup A, Martínez JA, Thorsdottir I, Zulet MA (2010) Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr Rev 68:214–231

    Article  PubMed  Google Scholar 

  • Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschöp MH, Gao XB, Horvath TL (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116:3229–3239

    Article  PubMed  CAS  Google Scholar 

  • Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81:223–241

    Article  PubMed  CAS  Google Scholar 

  • Amico JA, Vollmer RR, Cai HM, Miedlar JA, Rinaman L (2005) Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. Am J Physiol Regul Integr Comp Physiol 289:R1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Andrews ZB (2011) The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 34:31–40

    Article  PubMed  CAS  Google Scholar 

  • Anselme P (2010) The uncertainty processing theory of motivation. Behav Brain Res 208:291–310

    Article  PubMed  Google Scholar 

  • Anthony K, Reed LJ, Dunn JT, Bingham E, Hopkins D, Marsden PK, Amiel SA (2006) Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes 55:2986–2992

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi T, Birumachi J, Hiroyama M, Fujiwara Y, Sanbe A, Yamauchi J, Tanoue A (2007) Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology 148:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Augustine RA, Ladyman SR, Grattan DR (2008) From feeding one to feeding many: hormone-induced changes in bodyweight homeostasis during pregnancy. J Physiol 586:387–97

    Article  PubMed  CAS  Google Scholar 

  • Babcock AM, Livosky M, Avery DD (1985) Cholecystokinin and bombesin suppress operant responding for food reward. Pharmacol Biochem Behav 22:893–895

    Article  PubMed  CAS  Google Scholar 

  • Balfour ME, Yu L, Coolen LM (2004) Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacology 29:718–30

    Article  PubMed  CAS  Google Scholar 

  • Barnett BP, Hwang Y, Taylor MS, Kirchner H, Pfluger PT, Bernard V, Lin YY, Bowers EM, Mukherjee C, Song WJ, Longo PA, Leahy DJ, Hussain MA, Tschöp MH, Boeke JD, Cole PA (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692

    Article  PubMed  CAS  Google Scholar 

  • Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654

    Article  PubMed  CAS  Google Scholar 

  • Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941–948

    Article  PubMed  CAS  Google Scholar 

  • Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SC (2007) PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450:106–109

    Article  PubMed  CAS  Google Scholar 

  • Belgardt BF, Okamura T, Brüning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587:5305–5014

    Article  PubMed  CAS  Google Scholar 

  • Bernal SY, Dostova I, Kest A, Abayev Y, Kandova E, Touzani K, Sclafani A, Bodnar RJ (2008) Role of dopamine D1 and D2 receptors in the nucleus accumbens shell on the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats. Behav Brain Res 190:59–66

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97:537–550

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199:457–480

    Article  CAS  Google Scholar 

  • Berridge KC, Valenstein ES (1991) What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav Neurosci 105:3–14

    Article  PubMed  CAS  Google Scholar 

  • Blundell JE, Stubbs RJ, Golding C, Croden F, Alam R, Whybrow S, Le Noury J, Lawton CL (2005) Resistance and susceptibility to weight gain: individual variability in response to a high-fat diet. Physiol Behav 86:614–622

    Article  PubMed  CAS  Google Scholar 

  • Bouret SG, Simerly RB (2007) Development of leptin-sensitive circuits. J Neuroendocrinol 19:575–582

    Article  PubMed  CAS  Google Scholar 

  • Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB (2010) Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP Neurons. Endocrinology 151:4745–4755

    Article  PubMed  CAS  Google Scholar 

  • Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    Article  PubMed  Google Scholar 

  • Bruijnzeel AW, Corrie LW, Rogers JA, Yamada H (2011) Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats. Behav Brain Res. doi:10.1016/j.bbr.2011.01.020

  • Bush DE, DeSousa NJ, Vaccarino FJ (1999) Self-administration of intravenous amphetamine: effect of nucleus accumbens CCKB receptor activation on fixed-ratio responding. Psychopharmacology (Berl) 147:331–334

    Article  CAS  Google Scholar 

  • Caquineau C, Leng G, Guan XM, Jiang M, Van der Ploeg L, Douglas AJ (2006) Effects of alpha-melanocyte-stimulating hormone on magnocellular oxytocin neurones and their activation at intromission in male rats. J Neuroendocrinol 18:685–691

    Article  PubMed  CAS  Google Scholar 

  • Caquineau C, Leng G, Douglas AJ (2012) Sexual behaviour and neuronal activation in the vomeronasal pathway and hypothalamus of food-deprived male rats. J Neuroendocrinol, in press.

    Google Scholar 

  • Champagne FA, Chretien P, Stevenson CW, Zhang TY, Gratton A, Meaney MJ (2004) Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J Neurosci 24:4113–4123

    Article  PubMed  CAS  Google Scholar 

  • Chaudhri OB, Field BC, Bloom SR (2008) Gastrointestinal satiety signals. Int J Obes (Lond) 32:S28–31

    Article  CAS  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, Schwartz MW, Basdevant A, Weigle DS (2002) Elevated plasma ghrelin levels in Prader–Willi syndrome. Nat Med 8:643–644

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D (2004) Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab 287:E297–304

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719

    Article  PubMed  CAS  Google Scholar 

  • Davis JF, Tracy AL, Schurdak JD, Tschöp MH, Lipton JW, Clegg DJ, Benoit SC (2008) Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 122:1257–1263

    Article  PubMed  Google Scholar 

  • Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Figlewicz DP, Benoit SC (2011) Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry 69:668–674

    Article  PubMed  CAS  Google Scholar 

  • de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA, Simon SA (2008) Food reward in the absence of taste receptor signaling. Neuron 57:930–941

    Article  PubMed  CAS  Google Scholar 

  • DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, Tataranni PA (2007) Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes (Lond) 31:440–448

    Article  CAS  Google Scholar 

  • Delzenne N, Blundell J, Brouns F, Cunningham K, De Graaf K, Erkner A, Lluch A, Mars M, Peters HP, Westerterp-Plantenga M (2010) Gastrointestinal targets of appetite regulation in humans. Obes Rev 11:234–250

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Hrabovszky E, Hansson C, Jerlhag E, Alvarez-Crespo M, Skibicka KP, Molnar CS, Liposits Z, Engel JA, Egecioglu E (2010) Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Neuroscience 171:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Leng G, Robinson ICAF (1993) Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons. Neuroscience 53:303–306

    Article  PubMed  CAS  Google Scholar 

  • Dickson SL, Luckman SM (1997) Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology 138:771–777

    Article  PubMed  CAS  Google Scholar 

  • Diniz M, Azeredo Passos VM, Diniz MT (2010) Bariatric surgery and the gut-brain communication–the state of the art three years later. Nutrition 26:925–931

    Article  PubMed  Google Scholar 

  • Disse E, Bussier AL, Veyrat-Durebex C, Deblon N, Pfluger PT, Tschöp MH, Laville M, Rohner-Jeanrenaud F (2010) Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiol Behav 101:277–281

    Article  PubMed  CAS  Google Scholar 

  • Dockray GJ (2009) Cholecystokinin and gut-brain signalling. Regul Pept 155:6–10

    Article  PubMed  CAS  Google Scholar 

  • Dornonville de la Cour C, Lindqvist A, Egecioglu E, Tung YC, Surve V, Ohlsson C, Jansson JO, Erlanson-Albertsson C, Dickson SL, Håkanson R (2005) Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice. Gut 54:907–913

    Article  PubMed  CAS  Google Scholar 

  • Douglas AJ, Johnstone LE, Leng G (2007) Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 91:352–365

    Article  PubMed  CAS  Google Scholar 

  • Egecioglu E, Jerlhag E, Salomé N, Skibicka KP, Haage D, Bohlooly-Y M, Andersson D, Bjursell M, Perrissoud D, Engel JA, Dickson SL (2010) Ghrelin increases intake of rewarding food in rodents. Addict Biol 15:304–311

    Article  PubMed  CAS  Google Scholar 

  • Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC (2007) Leptin regulates striatal regions and human eating behavior. Science 317:1355

    Article  PubMed  CAS  Google Scholar 

  • Farooqi IS, O’Rahilly S (2008) Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab 4:569–577

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Higgins MS, Ng-Evans SB, Havel PJ (2001) Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol Behav 73:229–234

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit SC (2004) Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci 118:479–487

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Bennett JL, Naleid AM, Davis C, Grimm JW (2006) Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav 89:611–616

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Bennett JL, Aliakbari S, Zavosh A, Sipols AJ (2008) Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats. Am J Physiol Regul Integr Comp Physiol 295:R388–394

    Article  PubMed  CAS  Google Scholar 

  • Finlayson G, King N, Blundell JE (2007) Is it possible to dissociate ‘liking’ and ‘wanting’ for foods in humans? A novel experimental procedure. Physiol Behav 90:36–42

    Article  PubMed  CAS  Google Scholar 

  • Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    Article  PubMed  CAS  Google Scholar 

  • Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7–20

    Article  PubMed  CAS  Google Scholar 

  • Fulton S, Richard D, Woodside B, Shizgal P (2004) Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res 155:319–329

    Article  PubMed  CAS  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  PubMed  CAS  Google Scholar 

  • Goldfield GS, Lorello C, Doucet E (2007) Methylphenidate reduces energy intake and dietary fat intake in adults: a mechanism of reduced reinforcing value of food? Am J Clin Nutr 86:308–315

    PubMed  CAS  Google Scholar 

  • Green AL, Pereira EA, Aziz TZ (2010) Deep brain stimulation and pleasure. In: Kringelbach ML, Berridge KC (eds) Pleasures of the brain. Oxford University Press, New York

    Google Scholar 

  • Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HE, Fleshner M (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217:354–362

    Article  PubMed  Google Scholar 

  • Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29

    Article  PubMed  CAS  Google Scholar 

  • Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286:R31–7

    Article  PubMed  CAS  Google Scholar 

  • Hajnal A, Acharya NK, Grigson PS, Covasa M, Twining RC (2007) Obese OLETF rats exhibit increased operant performance for palatable sucrose solutions and differential sensitivity to D2 receptor antagonism. Am J Physiol Regul Integr Comp Physiol 293:R1846–1854

    Article  PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  • Hallschmid M, Benedict C, Schultes B, Born J, Kern W (2008) Obese men respond to cognitive but not to catabolic brain insulin signaling. Int J Obes (Lond) 32:275–282

    Article  CAS  Google Scholar 

  • Havermans RC (2011) You say it’s liking, I say it’s wanting… On the difficulty of disentangling food reward in man. Appetite 57:286–294

    Article  PubMed  Google Scholar 

  • Heath RG (1963) Electrical self-stimulation of the brain in man. Am J Psychiatry 120:571–577

    PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712

    Article  PubMed  CAS  Google Scholar 

  • Hewson AK, Dickson SL (2000) Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 12:1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S (2008) Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med 14:161–168

    Article  PubMed  CAS  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  PubMed  CAS  Google Scholar 

  • Hsiao S, Deupree D (1983) Cholecystokinin and bombesin effects on rewarded and nonrewarded operants. Peptides 4:1–3

    Article  PubMed  CAS  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA (2006) Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 11:45–54

    Article  PubMed  CAS  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (2007) Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 12:6–16

    Article  PubMed  CAS  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Engel JA (2010) Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology (Berl) 211:415–422

    Article  CAS  Google Scholar 

  • Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, Datta R, Perrissoud D, Dickson SL, Engel JA (2009) Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA 106:11318–11323

    Article  PubMed  CAS  Google Scholar 

  • Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641

    Article  PubMed  CAS  Google Scholar 

  • Josselyn SA, Vaccarino FJ (1995) Interaction of CCKB receptors with amphetamine in responding for conditioned rewards. Peptides 16:959–964

    Article  PubMed  CAS  Google Scholar 

  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I (2001) Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50:2438–2443

    Article  PubMed  CAS  Google Scholar 

  • Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10:573–584

    Article  PubMed  CAS  Google Scholar 

  • Kipping RR, Jago R, Lawlor DA (2008) Obesity in children. Part 1: epidemiology, measurement, risk factors, and screening. BMJ 337:922–927

    Article  Google Scholar 

  • Kobayashi M, Iaccarino C, Saiardi A, Heidt V, Bozzi Y, Picetti R, Vitale C, Westphal H, Drago J, Borrelli E (2004) Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci USA 101:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kringelbach ML, Berridge KC (2009) Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci 13:479–487

    Article  PubMed  Google Scholar 

  • Krügel U, Schraft T, Kittner H, Kiess W, Illes P (2003) Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482:185–187

    Article  PubMed  CAS  Google Scholar 

  • Lança AJ, De Cabo C, Arifuzzaman AI, Vaccarino FJ (1998) Cholecystokinergic innervation of nucleus accumbens subregions. Peptides 19:859–868

    Article  PubMed  Google Scholar 

  • Larsson A, Engel JA (2004) Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev 27:713–720

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist A, de la Cour CD, Stegmark A, Håkanson R, Erlanson-Albertsson C (2005) Overeating of palatable food is associated with blunted leptin and ghrelin responses. Regul Pept 130:123–132

    Article  PubMed  CAS  Google Scholar 

  • Lokrantz CM, Uvnäs-Moberg K, Kaplan JM (1997) Effects of central oxytocin administration on intraoral intake of glucose in deprived and nondeprived rats. Physiol Behav 62:347–352

    Article  PubMed  CAS  Google Scholar 

  • Lemmens SG, Martens EA, Born JM, Martens MJ, Westerterp-Plantenga MS (2011) Staggered meal consumption facilitates appetite control without affecting postprandial energy intake. J Nutr 141:482–488

    Article  PubMed  CAS  Google Scholar 

  • Leng G, Onaka T, Caquineau C, Sabatier N, Tobin VA, Takayanagi Y (2008) Oxytocin and appetite. Prog Brain Res 170:137–151

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788

    PubMed  CAS  Google Scholar 

  • Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7:400–409

    Article  PubMed  CAS  Google Scholar 

  • Marks JL, Porte D Jr, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127:3234–3236

    Article  PubMed  CAS  Google Scholar 

  • Matheny M, Shapiro A, Tümer N, Scarpace PJ (2011) Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats. Neuropharmacology 60:480–487

    Article  PubMed  CAS  Google Scholar 

  • McGowan MK, Andrews KM, Fenner D, Grossman SP (1993) Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity. Physiol Behav 54:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Negus SS (1998) Effects of kappa opioid agonists on cocaine- and food-maintained responding by rhesus monkeys. J Pharmacol Exp Ther 286:812–824

    PubMed  CAS  Google Scholar 

  • Mitra A, Gosnell BA, Schiöth HB, Grace MK, Klockars A, Olszewski PK, Levine AS (2010) Chronic sugar intake dampens feeding-related activity of neurons synthesizing a satiety mediator, oxytocin. Peptides 31:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Moran TH, Bi S (2006) Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans R Soc Lond B Biol Sci 361:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 21:643–651

    Article  PubMed  CAS  Google Scholar 

  • Nacmias B, Cellini E, Ricca V, Tedde A, Bagnoli S, Di Bernardo M, Sorbi S (2004) Ghrelin gene polymorphisms in patients with anorexia and bulimia nervosa. Eur Psychiatry 19(suppl 1):224

    Google Scholar 

  • Naef L, Moquin L, Dal Bo G, Giros B, Gratton A, Walker CD (2011) Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 176:225–236

    Article  PubMed  CAS  Google Scholar 

  • Naleid AM, Grace MK, Cummings DE, Levine AS (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26:2274–2279

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Olson BR, Drutarosky MD, Stricker EM, Verbalis JG (1991) Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatments in rats: evidence for central oxytocin inhibition of food intake. Endocrinology 129:785–791

    Article  PubMed  CAS  Google Scholar 

  • Olszewski PK, Shaw TJ, Grace MK, Höglund CE, Fredriksson R, Schiöth HB, Levine AS (2009) Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: involvement of opioids, orexin, oxytocin and NPY. Peptides 30:226–233

    Article  PubMed  CAS  Google Scholar 

  • Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schiöth HB, Levine AS (2010) Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology 151:4736–4744

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381

    Article  PubMed  CAS  Google Scholar 

  • Papp M, Bal A (1987) Separation of the motivational and motor consequences of 6-hydroxydopamine lesions of the mesolimbic or nigrostriatal system in rats. Behav Brain Res 23:221–229

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Perello M, Sakata I, Birnbaum S, Chuang JC, Osborne-Lawrence S, Rovinsky SA, Woloszyn J, Yanagisawa M, Lutter M, Zigman JM (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67:880–886

    Article  PubMed  CAS  Google Scholar 

  • Potter GM, Moshirfar A, Castonguay TW (1999) Insulin affects dopamine overflow in the nucleus accumbens and the striatum. Physiol Behav 65:811–816

    Article  PubMed  CAS  Google Scholar 

  • Qi J, Yang JY, Song M, Li Y, Wang F, Wu CF (2008) Inhibition by oxytocin of methamphetamine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice. Naunyn Schmiedebergs Arch Pharmacol 376:441–448

    Article  PubMed  CAS  Google Scholar 

  • Qian S, Chen H, Weingarth D, Trumbauer ME, Novi DE, Guan X, Yu H, Shen Z, Feng Y, Frazier E, Chen A, Camacho RE, Shearman LP, Gopal-Truter S, MacNeil DJ, Van der Ploeg LH, Marsh DJ (2002) Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22:5027–5035

    Article  PubMed  CAS  Google Scholar 

  • Rentsch J, Levens N, Chiesi M (1995) Recombinant ob-gene product reduces food intake in fasted mice. Biochem Biophys Res Commun 214:131–136

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A, Lindy J (1965) Effects of the availability of rewarding septal and hypothalamic stimulation on bar pressing for food under conditions of deprivation. J Comp Physiol Psychol 60:158–161

    Article  PubMed  CAS  Google Scholar 

  • Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262

    Article  PubMed  CAS  Google Scholar 

  • Salomé N, Hansson C, Taube M, Gustafsson-Ericson L, Egecioglu E, Karlsson-Lindahl L, Fehrentz JA, Martinez J, Perrissoud D, Dickson SL (2009) On the central mechanism underlying ghrelin’s chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist. J Neuroendocrinol 21:777–785

    Article  PubMed  CAS  Google Scholar 

  • Scheen AJ (2010) Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 10:321–334

    Article  PubMed  CAS  Google Scholar 

  • Scheurink AJ, Boersma GJ, Nergårdh R, Södersten P (2010) Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav 100:490–495

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593

    Article  PubMed  CAS  Google Scholar 

  • Scislowski PW, Tozzo E, Zhang Y, Phaneuf S, Prevelige R, Cincotta AH (1999) Biochemical mechanisms responsible for the attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int J Obes Relat Metab Disord 23:425–431

    Article  PubMed  CAS  Google Scholar 

  • Shor-Posner G, Azar AP, Insinga S, Leibowitz SF (1985) Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol Behav 35:883–890

    Article  PubMed  CAS  Google Scholar 

  • Sills TL, Vaccarino FJ (1996) Individual differences in the feeding response to CCKB antagonists: role of the nucleus accumbens. Peptides 17:593–599

    Article  PubMed  CAS  Google Scholar 

  • Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, Dahlgren S, Larsson B, Narbro K, Sjöström CD, Sullivan M, Wedel H, Swedish Obese Subjects Study Scientific Group (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351:2683–2693

    Article  PubMed  Google Scholar 

  • Skibicka KP, Dickson SL (2011). Ghrelin and food reward: The story of potential underlying substrates. Peptides, in press

    Google Scholar 

  • Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg A, Dickson SL (2011a) Ghrelin directly targets the mesolimbic pathway to change food motivation in rats. Neuroscience 180:129–137

    Google Scholar 

  • Skibicka KP, Hansson C, Egecioglu E, Dickson SL (2011b) Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol. doi:10.1111/j.1369-1600.2010.00294

  • Smith MS, Grove KL (2002) Integration of the regulation of reproductive function and energy balance: lactation as a model. Front Neuroendocrinol 23:225–256

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527

    Article  PubMed  CAS  Google Scholar 

  • Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390:521–525

    Article  PubMed  CAS  Google Scholar 

  • Stice E, Spoor S, Ng J, Zald DH (2009) Relation of obesity to consummatory and anticipatory food reward. Physiol Behav 97:551–560

    Article  PubMed  CAS  Google Scholar 

  • Succu S, Sanna F, Cocco C, Melis T, Boi A, Ferri GL, Argiolas A, Melis MR (2008) Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 28:813–821

    Article  PubMed  Google Scholar 

  • Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD (1999) Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci USA 96:12138–12143

    Article  PubMed  CAS  Google Scholar 

  • Szczypka MS, Rainey MA, Palmiter RD (2000) Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nat Genet 25:102–104

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K (2008) Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 19:951–955

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Naruo T, Muranaga T, Yasuhara D, Shiiya T, Nakazato M, Matsukura S, Nozoe S (2002) Increased fasting plasma ghrelin levels in patients with bulimia nervosa. Eur J Endocrinol 146:R1–3

    Article  PubMed  CAS  Google Scholar 

  • Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, Muzzin P, Schürmann A, Szanto I, Tschöp MH, Rohner-Jeanrenaud F (2006) Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116:1983–1993

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst G, Reimann F, Gribble FM (2009) Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 587:27–32

    Article  PubMed  CAS  Google Scholar 

  • Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  PubMed  Google Scholar 

  • Tung YC, Ma M, Piper S, Coll A, O’Rahilly S, Yeo GS (2008) Novel leptin-regulated genes revealed by transcriptional profiling of the hypothalamic paraventricular nucleus. J Neurosci 28:12419–12426

    Article  PubMed  CAS  Google Scholar 

  • van der Laan LN, de Ridder DT, Viergever MA, Smeets PA (2011) The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55:296–303

    Article  PubMed  Google Scholar 

  • Vincent RP, le Roux CW (2008) The satiety hormone peptide YY as a regulator of appetite. J Clin Pathol 61:548–552

    Article  PubMed  CAS  Google Scholar 

  • Voigt MM, Wang RY, Westfall TC (1985) The effects of cholecystokinin on the in vivo release of newly synthesized [3 H]dopamine from the nucleus accumbens of the rat. J Neurosci 5:2744–2749

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, Wong C, Gatley SJ, Gifford AN, Ding YS, Pappas N (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44:175–180

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560

    Article  PubMed  CAS  Google Scholar 

  • Warne JP, Horneman HF, Ginsberg AB, Pecoraro NC, Foster MT, Akana SF, Dallman MF (2007) Mapping brain c-Fos immunoreactivity after insulin-induced voluntary lard intake: insulin- and lard-associated patterns. J Neuroendocrinol 19:794–808

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    Article  PubMed  CAS  Google Scholar 

  • Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540–2547

    Article  PubMed  CAS  Google Scholar 

  • Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Mathur A, Tampakeras M (1993) Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 107:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW (2009) A neural computational model of incentive salience. PLoS Comput Biol 5:e1000437

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–1209

    Article  PubMed  CAS  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the EU Seventh Framework programme under grant agreements FP7-KBBE-2009-245009 (NeuroFAST), FP7-HEALTH-2009–241592 (EurOCHIP) and FP7-KBBE-2010-266408 (Full4Health), The Swedish Medical Research Council (K2007-54X-20328–013), ALF Göteborg (SU7601), the Swedish Foundation for Strategic Research to Sahlgrenska Center for Cardiovascular and Metabolic Research (A305-188) and the Swedish Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. W. Menzies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menzies, J.R.W., Skibicka, K.P., Egecioglu, E., Leng, G., Dickson, S.L. (2012). Peripheral Signals Modifying Food Reward. In: Joost, HG. (eds) Appetite Control. Handbook of Experimental Pharmacology, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24716-3_6

Download citation

Publish with us

Policies and ethics