Advertisement

Intestinal Sensing of Nutrients

  • Gwen Tolhurst
  • Frank Reimann
  • Fiona M. Gribble
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 209)

Abstract

Ingestion of a meal triggers a range of physiological responses both within and outside the gut, and results in the remote modulation of appetite and glucose homeostasis. Luminal contents are sensed by specialised chemosensitive cells scattered throughout the intestinal epithelium. These enteroendocrine and tuft cells make direct contact with the gut lumen and release a range of chemical mediators, which can either act in a paracrine fashion interacting with neighbouring cells and nerve endings or as classical circulating hormones. At the molecular level, the chemosensory machinery involves multiple and complex signalling pathways including activation of G-protein-coupled receptors and solute carrier transporters. This chapter will discuss our current knowledge of the molecular mechanisms underlying intestinal chemosensation with a particular focus on the relatively well-characterised nutrient-triggered secretion from the enteroendocrine system.

Keywords

CCK Enteroendocrine cells GLP-1 GIP Nutrient transporters PYY 

Abbreviations

2-APB

2-Aminoethoxydiphenyl borate

5-HT

Serotonin

CaMK

Ca2+/calmodulin-dependent protein kinases

cAMP

Cyclic adenosine monophosphate

CCK

Cholecystokinin

DGAT1

Diacylglycerol acyltransferase 1

EC

Enterochromaffin cell

FFA

Free fatty acids

GIP

Glucose-dependent insulinotropic polypeptide

GLP

Glucagon-like peptide

GPCR

G-protein-coupled receptor

LCFA

Long-chain fatty acids

MTP

Microsomal triglyceride transfer protein

NOPE

N-oleoyl-phosphatidylethanolamine

OEA

Oleoylethanolamide

PKA

Protein kinase A

PKC

Protein kinase C

PLC

Phospholipase C

PYY

PeptideYY

SCFA

Short-chain fatty acids

SLC

Solute carrier transporters

Notes

Acknowledgements

FMG, GT and FR are supported by grants from the Wellcome Trust ((#WT088357, #WT084210).

References

  1. Aljure O, Díez-Sampedro A (2010) Functional characterization of mouse sodium/glucose transporter type 3b. Am J Physiol Cell Physiol 299:C58–C65PubMedGoogle Scholar
  2. Aponte GW, Taylor IL, Soll AH (1988) Primary culture of PYY cells from canine colon. Am J Physiol 254:G829–G836PubMedGoogle Scholar
  3. Balakrishnan A, Stearns AT, Rounds J, Irani J, Giuffrida M, Rhoads DB, Ashley SW, Tavakkolizadeh A (2008) Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery 143:813–818PubMedGoogle Scholar
  4. Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, Zuo J, Soleimani M (2009) Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 284:5056–5066PubMedGoogle Scholar
  5. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:325–353PubMedGoogle Scholar
  6. Behrens M, Reichling C, Batram C, Brockhoff A, Meyerhof W (2009) Bitter taste receptors and their cells. Ann N Y Acad Sci 1170:111–115PubMedGoogle Scholar
  7. Bezençon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49PubMedGoogle Scholar
  8. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311PubMedGoogle Scholar
  9. Brown EM (2007) The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 45:139–167PubMedGoogle Scholar
  10. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319PubMedGoogle Scholar
  11. Carleton A, Accolla R, Simon SA (2010) Coding in the mammalian gustatory system. Trends Neurosci 33:326–334PubMedGoogle Scholar
  12. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, Brown EM (1998) Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol 274:G122–G130PubMedGoogle Scholar
  13. Chen XZ, Coady MJ, Jackson F, Berteloot A, Lapointe JY (1995) Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Biophys J 69:2405–2414PubMedGoogle Scholar
  14. Cheng SX, Okuda M, Hall AE, Geibel JP, Hebert SC (2002) Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am J Physiol Gastrointest Liver Physiol 283:G240–G250PubMedGoogle Scholar
  15. Choi S, Lee M, Shiu AL, Yo SJ, Halldén G, Aponte GW (2007) GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 292:G1366–G1375PubMedGoogle Scholar
  16. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J (2008) A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 149:2038–2047PubMedGoogle Scholar
  17. Conigrave AD, Brown EM (2006) Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291:G753–G761PubMedGoogle Scholar
  18. Conigrave AD, Hampson DR (2006) Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 17:398–407PubMedGoogle Scholar
  19. Cordier-Bussat M, Bernard C, Levenez F, Klages N, Laser-Ritz B, Philippe J, Chayvialle JA, Cuber JC (1998) Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 47:1038–1045PubMedGoogle Scholar
  20. Debnam ES, Levin RJ (1975) An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol 246:181–196PubMedGoogle Scholar
  21. Díez-Sampedro A, Barcelona S (2011) Sugar binding residue affects apparent Na + affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B. J Biol Chem 286:7975–7982PubMedGoogle Scholar
  22. Diez-Sampedro A, Lostao MP, Wright EM, Hirayama BA (2000) Glycoside binding and translocation in Na(+)-dependent glucose cotransporters: comparison of SGLT1 and SGLT3. J Membr Biol 176:111–117PubMedGoogle Scholar
  23. Diez-Sampedro A, Hirayama AB, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright E, Koepsell H (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci 100:11753–11758PubMedGoogle Scholar
  24. Dockray GJ (2003) Luminal sensing in the gut: an overview. J Physiol Pharmacol 54(Suppl 4):9–17PubMedGoogle Scholar
  25. Drucker D, Jin T, Asa SL, Young TA, Brubaker PL (1994) Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol Endocrinol 8:1646–1655PubMedGoogle Scholar
  26. Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305PubMedGoogle Scholar
  27. Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–2287PubMedGoogle Scholar
  28. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V (1993) Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 138:159–166PubMedGoogle Scholar
  29. Ellrichmann M, Kapelle M, Ritter PR, Holst JJ, Herzig KH, Schmidt WE, Schmitz F, Meier JJ (2008) Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations. J Clin Endocrinol Metab 93:3995–3998PubMedGoogle Scholar
  30. El-Ouaghlidi A, Rehring E, Holst JJ, Schweizer A, Foley J, Holmes D, Nauck MA (2007) The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. J Clin Endocrinol Metab 92:4165–4171PubMedGoogle Scholar
  31. Enç FY, Ones T, Akin HL, Dede F, Turoğlu HT, Ulfer G, Bekiroğlu N, Haklar G, Rehfeld JF, Holst JJ, Ulusoy NB, Imeryüz N (2009) Orlistat accelerates gastric emptying and attenuates GIP release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 296:G482–G489PubMedGoogle Scholar
  32. Ferraris RP, Yasharpour S, Lloyd KC, Mirzayan R, Diamond JM (1990) Luminal glucose concentrations in the gut under normal conditions. Am J Physiol 259:G822–G837PubMedGoogle Scholar
  33. Freeland KR, Wolever TM (2010) Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr 103:460–466PubMedGoogle Scholar
  34. Freeman SL, Bohan D, Darcel N, Raybould HE (2006a) Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Am J Physiol Gastrointest Liver Physiol 291:G439–G445PubMedGoogle Scholar
  35. Freeman SL, Glatzle J, Robin CS, Valdellon M, Sternini C, Sharp JW, Raybould HE (2006b) Ligand-induced 5-HT3 receptor internalization in enteric neurons in rat ileum. Gastroenterology 131:97–107PubMedGoogle Scholar
  36. Friedlander RS, Moss CE, Mace J, Parker HE, Tolhurst G, Habib AM, Wachten S, Cooper DM, Gribble FM, Reimann F (2010) Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon like peptide 1 secreting cells. Br J Pharmacol 163:261–271Google Scholar
  37. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93PubMedGoogle Scholar
  38. Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, Piomelli D (2007) Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem 282:1518–1528PubMedGoogle Scholar
  39. Fujita Y, Wideman RD, Speck M, Asadi A, King DS, Webber TD, Haneda M, Kieffer TJ (2009) Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab 296:E473–E479PubMedGoogle Scholar
  40. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R1269–R1276PubMedGoogle Scholar
  41. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T (1997) Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 414:461–464PubMedGoogle Scholar
  42. Gama L, Baxendale-Cox LM, Breitwieser GE (1997) Ca2+-sensing receptors in intestinal epithelium. Am J Physiol 273:C1168–C1175PubMedGoogle Scholar
  43. Geibel JP, Hebert SC (2009) The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol 71:205–217PubMedGoogle Scholar
  44. Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, Romagnolo B, Shroyer NF, Bourgaux JF, Pignodel C, Clevers H, Jay P (2011) Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol 192:767–780PubMedGoogle Scholar
  45. Glatzle J, Kalogeris TJ, Zittel TT, Guerrini S, Tso P, Raybould HE (2002) Chylomicron components mediate intestinal lipid-induced inhibition of gastric motor function. Am J Physiol Gastrointest Liver Physiol 282:G86–G91PubMedGoogle Scholar
  46. Greenfield JR, Farooqi IS, Keogh JM, Henning E, Habib AM, Blackwood A, Reimann F, Holst JJ, Gribble FM (2009) Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am J Clin Nutr 89:106–113PubMedGoogle Scholar
  47. Gribble FM, Williams L, Simpson AK, Reimann F (2003) A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52:1147–1154PubMedGoogle Scholar
  48. Grundy D (2004) What activates visceral afferents? Gut 53(Suppl 2):ii5–ii8PubMedGoogle Scholar
  49. Guillemain G, Loizeau M, Pinçon-Raymond M, Girard J, Leturque A (2000) The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J Cell Sci 113:841–847PubMedGoogle Scholar
  50. Hansen L, Hartmann B, Mineo H, Holst JJ (2004) Glucagon-like peptide-1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin in isolated perfused porcine ileum. Regul Pept 118:11–18PubMedGoogle Scholar
  51. Hata T, Mera Y, Ishii Y, Tadaki H, Tomimoto D, Kuroki Y, Kawai T, Ohta T, Kakutani M (2011) JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. J Pharmacol Exp Ther 336:850–856PubMedGoogle Scholar
  52. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins introduction. Pflugers Arch 447:465–468PubMedGoogle Scholar
  53. Helliwell PA, Rumsby MG, Kellett GL (2003) Intestinal sugar absorption is regulated by phosphorylation and turnover of protein kinase C betaII mediated by phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent pathways. J Biol Chem 278:28644–28650PubMedGoogle Scholar
  54. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94PubMedGoogle Scholar
  55. Höfer D, Drenckhahn D (1996) Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem Cell Biol 105:405–412PubMedGoogle Scholar
  56. Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93:6631–6634PubMedGoogle Scholar
  57. Holzer P (2009) Opioid receptors in the gastrointestinal tract. Regul Pept 155:11–17PubMedGoogle Scholar
  58. Hunt JN, Knox MT (1968) A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol 194:327–336PubMedGoogle Scholar
  59. Hwang ES, Hirayama BA, Wright EM (1991) Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun 181:1208–1217PubMedGoogle Scholar
  60. Iakoubov R, Izzo A, Yeung A, Whiteside CI, Brubaker PL (2007) Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology 148:1089–1098PubMedGoogle Scholar
  61. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074PubMedGoogle Scholar
  62. Jarvi O, Keyrilainen O (1956) On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholantren. Acta Pathol Microbiol Scand Suppl 39:72–73PubMedGoogle Scholar
  63. Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324:353–360PubMedGoogle Scholar
  64. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 39:135–142PubMedGoogle Scholar
  65. Khan NA, Besnard P (2009) Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim Biophys Acta 1791:149–155PubMedGoogle Scholar
  66. Kindel T, Lee DM, Tso P (2010) The mechanism of the formation and secretion of chylomicrons. Atheroscler Suppl 11:11–16PubMedGoogle Scholar
  67. Kokrashvili Z, Mosinger B, Margolskee RF (2009a) T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann N Y Acad Sci 1170:91–94PubMedGoogle Scholar
  68. Kokrashvili Z, Rodriguez D, Yevshayeva V, Zhou H, Margolskee RF, Mosinger B (2009b) Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137:598–606PubMedGoogle Scholar
  69. Konturek SJ, Radecki T, Thor P, Dembinski A (1973) Release of cholecystokinin by amino acids. Proc Soc Exp Biol Med 143:305–309PubMedGoogle Scholar
  70. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 318:619–628PubMedGoogle Scholar
  71. Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D (2001) Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 281:G907–G915PubMedGoogle Scholar
  72. Lan H, Vassileva G, Corona A, Liu L, Baker H, Golovko A, Abbondanzo SJ, Hu W, Yang S, Ning Y, Del Vecchio RA, Poulet F, Laverty M, Gustafson EL, Hedrick JA, Kowalski TJ (2009) GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 201:219–230PubMedGoogle Scholar
  73. Le Nevé B, Daniel H (2011) Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCI-H716. Regul Pept 167:14–20PubMedGoogle Scholar
  74. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489PubMedGoogle Scholar
  75. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597PubMedGoogle Scholar
  76. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696PubMedGoogle Scholar
  77. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011a) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140:903–912PubMedGoogle Scholar
  78. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA (2011b) The extracellular calcium sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 300:538–546Google Scholar
  79. Little TJ, Gupta N, Case RM, Thompson DG, McLaughlin JT (2009) Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans. Am J Physiol Regul Integr Comp Physiol 297:R632–R639PubMedGoogle Scholar
  80. Liu M, Seino S, Kirchgessner AL (1999) Identification and characterization of glucoresponsive neurons in the enteric nervous system. J Neurosci 19:10305–10317PubMedGoogle Scholar
  81. Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, Horowitz M, Rayner CK (2009) Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 296:G735–G739PubMedGoogle Scholar
  82. Ma J, Chang J, Checklin HL, Young RL, Jones KL, Horowitz M, Rayner CK (2010) Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br J Nutr 104:803–806PubMedGoogle Scholar
  83. Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392PubMedGoogle Scholar
  84. Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210PubMedGoogle Scholar
  85. Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277:1–4PubMedGoogle Scholar
  86. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080PubMedGoogle Scholar
  87. Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P (2011) CD36 as a lipid sensor. Physiol Behav 105:36–42PubMedGoogle Scholar
  88. Martinez-Pinna J, Tolhurst G, Gurung IS, Vandenberg JI, Mahaut-Smith MP (2004) Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+ mobilization in the rat megakaryocyte. J Physiol 555:61–70PubMedGoogle Scholar
  89. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51PubMedGoogle Scholar
  90. McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G (1998) Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2+-dependent mechanism in the enteroendocrine cell line STC-1. J Physiol 513:11–18PubMedGoogle Scholar
  91. Meyer JH, Hlinka M, Khatibi A, Raybould HE, Tso P (1998) Role of small intestine in caloric compensations to oil premeals in rats. Am J Physiol 275:R1320–R1333PubMedGoogle Scholar
  92. Mitsui R, Ono S, Karaki S, Kuwahara A (2005) Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol Motil 17:585–594PubMedGoogle Scholar
  93. Money SR, Petroianu A, Gintzler AR, Jaffe BM (1988) Meal-stimulated release of methionine-enkephalin into the canine jejunal lumen. J Clin Invest 81:822–825PubMedGoogle Scholar
  94. Morgan EL, Mace OJ, Affleck J, Kellett GL (2007) Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J Physiol 580:593–604PubMedGoogle Scholar
  95. Murphy R, Tura A, Clark PM, Holst JJ, Mari A, Hattersley AT (2009) Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor. Diabetologia 52:154–159PubMedGoogle Scholar
  96. Nabeyama A, Leblond CP (1974) “Caveolated cells” characterized by deep surface invaginations and abundant filaments in mouse gastro-intestinal epithelia. Am J Anat 140:147–165PubMedGoogle Scholar
  97. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202PubMedGoogle Scholar
  98. Nemoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle JA, Cuber JC (1998) Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology 139:932–938PubMedGoogle Scholar
  99. Nielsen LB, Ploug KB, Swift P, Orskov C, Jansen-Olesen I, Chiarelli F, Holst JJ, Hougaard P, Porksen S, Holl R, de Beaufort C, Gammeltoft S, Rorsman P, Mortensen HB, Hansen L (2007) Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide-1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes. Eur J Endocrinol 156:663–671PubMedGoogle Scholar
  100. Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303:1047–1052PubMedGoogle Scholar
  101. Okawa M, Fujii K, Ohbuchi K, Okumoto M, Aragane K, Sato H, Tamai Y, Seo T, Itoh Y, Yoshimoto R (2009) Role of MGAT2 and DGAT1 in the release of gut peptides after triglyceride ingestion. Biochem Biophys Res Commun 390:377–381PubMedGoogle Scholar
  102. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175PubMedGoogle Scholar
  103. Parekh D, Ishizuka J, Townsend CM, Haber B, Beauchamp RD, Karp G, Kim SW, Rajaraman S, Greeley G, Thompson JC (1994) Characterization of a human pancreatic carcinoid in vitro: morphology, amine and peptide storage, and secretion. Pancreas 9:83–90PubMedGoogle Scholar
  104. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52:289–298PubMedGoogle Scholar
  105. Pilichiewicz A, O'Donovan D, Feinle C, Lei Y, Wishart JM, Bryant L, Meyer JH, Horowitz M, Jones KL (2003) Effect of lipase inhibition on gastric emptying of, and the glycemic and incretin responses to, an oil/aqueous drink in type 2 diabetes mellitus. J Clin Endocrinol Metab 88:3829–3834PubMedGoogle Scholar
  106. Powley TL, Spaulding RA, Haglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519:644–660PubMedGoogle Scholar
  107. Prezeau L, Rives ML, Comps-Agrar L, Maurel D, Kniazeff J, Pin JP (2010) Functional crosstalk between GPCRs: with or without oligomerization. Curr Opin Pharmacol 10:6–13PubMedGoogle Scholar
  108. Raybould HE, Meyer JH, Tabrizi Y, Liddle RA, Tso P (1998) Inhibition of gastric emptying in response to intestinal lipid is dependent on chylomicron formation. Am J Physiol 274:R1834–R1838PubMedGoogle Scholar
  109. Raybould HE, Glatzle J, Freeman SL, Whited K, Darcel N, Liou A, Bohan D (2006) Detection of macronutrients in the intestinal wall. Auton Neurosci 125:28–33PubMedGoogle Scholar
  110. Rehfeld JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36:735–741PubMedGoogle Scholar
  111. Reimann F (2010) Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J 20:236–242PubMedGoogle Scholar
  112. Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763PubMedGoogle Scholar
  113. Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM (2004) Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47:1592–1601PubMedGoogle Scholar
  114. Reimann F, Maziarz M, Flock G, Habib AM, Drucker DJ, Gribble FM (2005) Characterization and functional role of voltage gated cation conductances in the glucagon-like peptide-1 secreting GLUTag cell line. J Physiol 563:161–175PubMedGoogle Scholar
  115. Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8:532–539PubMedGoogle Scholar
  116. Reimer RA (2006) Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J Endocrinol 191:159–170PubMedGoogle Scholar
  117. Reimer RA, Darimont C, Gremlich S, Nicolas-Metral V, Ruegg UT, Mace K (2001) A human cellular model for studying the regulation of glucagon-like peptide-1 secretion. Endocrinology 142:4522–4528PubMedGoogle Scholar
  118. Rey O, Young SH, Jacamo R, Moyer MP, Rozengurt E (2010) Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J Cell Physiol 225:73–83PubMedGoogle Scholar
  119. Rindi G, Grant SG, Yiangou Y, Ghatei MA, Bloom SR, Bautch VL, Solcia E, Polak JM (1990) Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol 136:1349–1363PubMedGoogle Scholar
  120. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10:819–830PubMedGoogle Scholar
  121. Ritzel U, Fromme A, Ottleben M, Leonhardt U, Ramadori G (1997) Release of glucagon-like peptide-1 (GLP-1) by carbohydrates in the perfused rat ileum. Acta Diabetol 34:18–21PubMedGoogle Scholar
  122. Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212PubMedGoogle Scholar
  123. Rogers GJ, Tolhurst G, Ramzan A, Habib AM, Parker HE, Gribble FM, Reimann F (2011) Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells. J Physiol 589:1081–1093PubMedGoogle Scholar
  124. Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495PubMedGoogle Scholar
  125. Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792–G802PubMedGoogle Scholar
  126. Sakata Y, Fujimoto K, Ogata S, Koyama T, Fukagawa K, Sakai T, Tso P (1996) Postabsorptive factors are important for satiation in rats after a lipid meal. Am J Physiol 271:G438–G442PubMedGoogle Scholar
  127. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D (2008) The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 8:281–288PubMedGoogle Scholar
  128. Sclafani A, Ackroff K, Abumrad NA (2007) CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol 293:R1823–R1832PubMedGoogle Scholar
  129. Shirazi-Beechey SP, Moran AW, Bravo D, Al-Rammahi M (2011) Intestinal glucose sensing and regulation of glucose absorption: implications for swine nutrition. J Anim Sci 89:1854–1862PubMedGoogle Scholar
  130. Simons PJ, Boon L (2010) Lingual CD36 and obesity: a matter of fat taste? Acta Histochem 113:765–767PubMedGoogle Scholar
  131. Sjölund K, Sandén G, Håkanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130PubMedGoogle Scholar
  132. Soleimani M (2011) Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf) 201:55–62Google Scholar
  133. Stearns AT, Balakrishnan A, Rhoads DB, Tavakkolizadeh A (2010) Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 251:865–871PubMedGoogle Scholar
  134. Stephen AM, Haddad AC, Phillips SF (1983) Passage of carbohydrate into the colon. Direct measurements in humans. Gastroenterology 85:589–595PubMedGoogle Scholar
  135. Sykes S, Morgan LM, English J, Marks V (1980) Evidence for preferential stimulation of gastric inhibitory polypeptide secretion in the rat by actively transported carbohydrates and their analogues. J Endocrinol 85:201–207PubMedGoogle Scholar
  136. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 377:523–527PubMedGoogle Scholar
  137. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30:149–156PubMedGoogle Scholar
  138. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM (2006) Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 290:550–559Google Scholar
  139. Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM (2011) Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 152:405–413PubMedGoogle Scholar
  140. Vilardaga JP, Agnati LF, Fuxe K, Ciruela F (2010) G-protein-coupled receptor heteromer dynamics. J Cell Sci 123:4215–4220PubMedGoogle Scholar
  141. Vincent KM, Sharp JW, Raybould HE (2011) Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats. Neurogastroenterol Motil 23:282–293Google Scholar
  142. Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA (2010) Amino acids stimulate cholecystokinin release through the calcium-sensing receptor. Am J Physiol Gastrointest Liver Physiol 300:528–537Google Scholar
  143. Wellendorph P, Burhenne N, Christiansen B, Walter B, Schmale H, Bräuner-Osborne H (2007) The rat GPRC6A: cloning and characterization. Gene 396:257–267PubMedGoogle Scholar
  144. Wellendorph P, Johansen LD, Bräuner-Osborne H (2010) The emerging role of promiscuous 7TM receptors as chemosensors for food intake. Vitam Horm 84:151–184PubMedGoogle Scholar
  145. Yoshida A, Takata K, Kasahara T, Aoyagi T, Saito S, Hirano H (1995) Immunohistochemical localization of Na(+)-dependent glucose transporter in the rat digestive tract. Histochem J 27:420–426PubMedGoogle Scholar
  146. Yoshikawa T, Inoue R, Matsumoto M, Yajima T, Ushida K, Iwanaga T (2011) Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract. Histochem Cell Biol 135:183–194PubMedGoogle Scholar
  147. You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S, Wells RG, Nigam SK, Hediger MA (1995) Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 270:29365–29371PubMedGoogle Scholar
  148. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295:E1160–E1166PubMedGoogle Scholar
  149. Zhu JX, Zhu XY, Owyang C, Li Y (2001) Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol 530:431–442PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gwen Tolhurst
    • 1
  • Frank Reimann
    • 1
  • Fiona M. Gribble
    • 1
  1. 1.Cambridge Institute for Medical ResearchCambridgeUK

Personalised recommendations