Role of CD36 in Oral and Postoral Sensing of Lipids

  • M. Chevrot
  • C. Martin
  • P. Passilly-Degrace
  • P. BesnardEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 209)


Obesity and associated plethora of diseases constitute a major public health challenge worldwide. The conjunction of profound changes in our lifestyle and a thrifty genetic that evolved in an environment of food scarcity largely explains this epidemic situation. Food abundance promotes our specific appetite for the more palatable food generally rich in lipids. It is noteworthy that this attraction for fatty food is not specific to humans. Rats and mice also spontaneously prefer lipid-rich food in a free-choice situation. Detection of lipids in food requires the presence of specific sensors located in strategic places (e.g., oral cavity, small intestine, brain) whose activation results in a modulation of the eating behavior. Recent data strongly suggest that the glycoprotein CD36 plays a significant role in this sensing system.


Central nervous system Dietary lipids Eating behavior Endocannabinoids Health Lipid receptors Obesity risk Sense of taste Small intestine 



Blood–brain barrier


Body mass index


Cocaine-amphetamine-related peptide




Fatty acid transport proteins


Glucagon-like peptide-1


G protein-coupled receptors


Human brain microvessel endothelial cells


Long-chain fatty acid


Lipoprotein lipase


Mitogen-activated protein kinase


Microsomal triglyceride transfer protein


Neuropeptide Y


Nucleus of solitary tract




Protein tyrosine kinase


Taste bud cells




Taste 1 receptors


Sulfo-N-succinimidyl oleate ester



This work was supported by the French Research Agency (ANR, sensoFAT project to P.B.) and the Burgundy Council and the Centre National Interprofessionnel de l’Economie Laitière (CNIEL) through the HumanFATaste program (to P.B.).


  1. Baillie AG, Coburn CT, Abumrad NA (1996) Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J Membr Biol 153:75–81PubMedCrossRefGoogle Scholar
  2. Bezencon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49PubMedCrossRefGoogle Scholar
  3. Brubaker PL, Anini Y (2003) Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 81:1005–1012PubMedCrossRefGoogle Scholar
  4. Chale-Rush A, Burgess JR, Mattes RD (2007) Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem Senses 32:423–431PubMedCrossRefGoogle Scholar
  5. Chen CH, Cartwright J Jr, Li Z, Lou S, Nguyen HH, Gotto AM Jr, Henry PD (1997) Inhibitory effects of hypercholesterolemia and ox-LDL on angiogenesis-like endothelial growth in rabbit aortic explants Essential role of basic fibroblast growth factor. Arteriosclerosis Thrombosis Vasc Biol 17:1303–1312CrossRefGoogle Scholar
  6. Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA (2000) Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275:32523–32529PubMedCrossRefGoogle Scholar
  7. Drewnowski A, Cohen AE, Faust IM, Grinker JA (1984) Meal-taking behavior is related to predisposition to dietary obesity in the rat. Physiol Behav 32:61–67PubMedCrossRefGoogle Scholar
  8. Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM, Sahoo D, Tso P, Abumrad NA (2005) CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest 115:1290–1297PubMedGoogle Scholar
  9. Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165PubMedCrossRefGoogle Scholar
  10. Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305PubMedCrossRefGoogle Scholar
  11. El-Yassimi A, Hichami A, Besnard P, Khan NA (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 283:12949–12959PubMedCrossRefGoogle Scholar
  12. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268:11811–11816PubMedGoogle Scholar
  13. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791PubMedGoogle Scholar
  14. Fu J, Kim J, Oveisi F, Astarita G, Piomelli D (2008) Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats. Am J Physiol Regul Integr Comp Physiol 295:R45–50PubMedCrossRefGoogle Scholar
  15. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T (1997) Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 414:461–464PubMedCrossRefGoogle Scholar
  16. Fukuwatari T, Shibata K, Iguchi K, Saeki T, Iwata A, Tani K, Sugimoto E, Fushiki T (2003) Role of gustation in the recognition of oleate and triolein in anosmic rats. Physiol Behav 78:579–583PubMedCrossRefGoogle Scholar
  17. Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace P, Hichami A, Khan NA, Montmayeur JP, Besnard P (2008) The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22:1458–1468PubMedCrossRefGoogle Scholar
  18. Guijarro A, Fu J, Astarita G, Piomelli D (2010) CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res 61:27–33PubMedCrossRefGoogle Scholar
  19. Hajri T, Ibrahimi A, Coburn CT, Knapp FF Jr, Kurtz T, Pravenec M, Abumrad NA (2001) Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 276:23661–23666PubMedCrossRefGoogle Scholar
  20. Hass N, Schwarzenbacher K, Breer H (2010) T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach. Cell Tissue Res 339:493–504PubMedCrossRefGoogle Scholar
  21. Hiraoka T, Fukuwatari T, Imaizumi M, Fushiki T (2003) Effects of oral stimulation with fats on the cephalic phase of pancreatic enzyme secretion in esophagostomized rats. Physiol Behav 79:713–717PubMedCrossRefGoogle Scholar
  22. Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS (1991) Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci USA 88:7844–7848PubMedCrossRefGoogle Scholar
  23. Ibrahimi A, Abumrad NA (2002) Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 5:139–145PubMedCrossRefGoogle Scholar
  24. Iwatsuki K, Nomura M, Shibata A, Ichikawa R, Enciso PL, Wang L, Takayanagi R, Torii K, Uneyama H (2010) Generation and characterization of T1R2-LacZ knock-in mouse. Biochem Biophys Res Commun 402:495–499PubMedCrossRefGoogle Scholar
  25. Kamp F, Westterhoff HV, Hamilton JA (1993) Movement of fatty acids, fatty acid analogues and bile acids across phospholipid bilayers. Biochemistry 32:11074–11086PubMedCrossRefGoogle Scholar
  26. Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34:11928–11937PubMedCrossRefGoogle Scholar
  27. Kampf JP, Cupp D, Kleinfeld AM (2006) Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles. J Biol Chem 281:21566–21574PubMedCrossRefGoogle Scholar
  28. Kleinfeld AM, Chu P, Romero C (1997) Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry 36:14146–14158PubMedCrossRefGoogle Scholar
  29. Kleinfeld AM, Storch J (1993) Transfer of long-chain fluorescent fatty acids between small and large unilamellar vesicles. Biochemistry 32:2053–2061PubMedCrossRefGoogle Scholar
  30. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184PubMedCrossRefGoogle Scholar
  31. Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE (2009) Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 297:R655–664PubMedCrossRefGoogle Scholar
  32. Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392PubMedCrossRefGoogle Scholar
  33. Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210PubMedCrossRefGoogle Scholar
  34. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080PubMedCrossRefGoogle Scholar
  35. Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P (2011) CD36 as a lipid sensor. Physiol Behav 105(1):36–42Google Scholar
  36. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R, Yuasa-Kawase M, Yamashita Y, Takada M, Tsubakio-Yamamoto K, Tochino Y, Koseki M, Matsuura F, Nishida M, Kawamoto T, Ishigami M, Hori M, Shimomura I, Yamashita S (2009) Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res 50:999–1011PubMedCrossRefGoogle Scholar
  37. McCormack DN, Clyburn VL, Pittman DW (2006) Detection of free fatty acids following a conditioned taste aversion in rats. Physiol Behav 87:582–594PubMedCrossRefGoogle Scholar
  38. Mela DJ (1988) Sensory assessment of fat content in fluid dairy products. Appetite 10:37–44PubMedCrossRefGoogle Scholar
  39. Miranda M, Sorkin A (2007) Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol Interv 7:157–167PubMedCrossRefGoogle Scholar
  40. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746PubMedCrossRefGoogle Scholar
  41. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 4:e5106PubMedCrossRefGoogle Scholar
  42. Nassir F, Wilson B, Han X, Gross RW, Abumrad NA (2007) CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem 282:19493–19501PubMedCrossRefGoogle Scholar
  43. Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM, Vonlehmden SB, Lee D, Jandacek RJ, Abumrad NA, Tso P (2006) CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 131:1197–1207PubMedCrossRefGoogle Scholar
  44. Niot I, Poirier H, Tran TT, Besnard P (2009) Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 48:101–115PubMedCrossRefGoogle Scholar
  45. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275PubMedCrossRefGoogle Scholar
  46. Oomura Y, Nakamura T, Sugimori M, Yamada Y (1975) Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav 14:483–486PubMedCrossRefGoogle Scholar
  47. Oquendo P, Hundt E, Lawler J, Seed B (1989) CD36 directly mediates cytoadherence of plasmodium falciparum parasitized erythrocytes. Cell 58:95–101PubMedCrossRefGoogle Scholar
  48. Petit V, Arnould L, Martin P, Monnot MC, Pineau T, Besnard P, Niot I (2007) Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J Lipid Res 48:278–287PubMedCrossRefGoogle Scholar
  49. Poirier H, Degrace P, Niot I, Bernard A, Besnard P (1996) Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem 238:368–373PubMedCrossRefGoogle Scholar
  50. Rac ME, Safranow K, Poncyljusz W (2007) Molecular basis of human CD36 gene mutations. Mol Med 13:288–296PubMedCrossRefGoogle Scholar
  51. Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181:1857–1862PubMedCrossRefGoogle Scholar
  52. Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212PubMedCrossRefGoogle Scholar
  53. Ross AC (1993) Overview of retinoid metabolism. J Nutr 123:346–350PubMedGoogle Scholar
  54. Schoeller C, Keelan M, Mulvey G, Stremmel W, Thomson AB (1995) Oleic acid uptake into rat and rabbit jejunal brush border membrane. Biochim Biophys Acta 1236:51–64PubMedCrossRefGoogle Scholar
  55. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D (2008) The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 8:281–288PubMedCrossRefGoogle Scholar
  56. Serrano A, Pavon FJ, Tovar S, Casanueva F, Senaris R, Dieguez C, de Fonseca FR (2011) Oleoylethanolamide: effects on hypothalamic transmitters and gut peptides regulating food intake. Neuropharmacology 60:593–601PubMedCrossRefGoogle Scholar
  57. Simons PJ, Kummer JA, Luiken JJ, Boon L (2010) Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 113(8):839–43Google Scholar
  58. Smith JC, Fisher EM, Maleszewski V, McClain B (2000) Orosensory factors in the ingestion of corn oil/sucrose mixtures by the rat. Physiol Behav 69:135–146PubMedCrossRefGoogle Scholar
  59. Sovic A, Panzenboeck U, Wintersperger A, Kratzer I, Hammer A, Levak-Frank S, Frank S, Rader DJ, Malle E, Sattler W (2005) Regulated expression of endothelial lipase by porcine brain capillary endothelial cells constituting the blood–brain barrier. J Neurochem 94:109–119PubMedCrossRefGoogle Scholar
  60. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS (2010) Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104:145–152PubMedCrossRefGoogle Scholar
  61. Takeda M, Imaizumi M, Fushiki T (2000) Preference for vegetable oils in the two-bottle choice test in mice. Life Sci 67:197–204PubMedCrossRefGoogle Scholar
  62. Takeda M, Sawano S, Imaizumi M, Fushiki T (2001) Preference for corn oil in olfactory-blocked mice in the conditioned place preference test and the two-bottle choice test. Life Sci 69:847–854PubMedCrossRefGoogle Scholar
  63. Tran TT, Poirier H, Clement L, Nassir F, Pelsers MM, Petit V, Degrace P, Monnot MC, Glatz JF, Abumrad NA, Besnard P, Niot I (2011) Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J Biol Chem 286(28):25201–10Google Scholar
  64. Tsuruta M, Kawada T, Fukuwatari T, Fushiki T (1999) The orosensory recognition of long-chain fatty acids in rats. Physiol Behav 66:285–288PubMedCrossRefGoogle Scholar
  65. Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE, Routh VH (2006) Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 95:1491–1498PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Chevrot
    • 1
  • C. Martin
    • 1
  • P. Passilly-Degrace
    • 1
  • P. Besnard
    • 1
    Email author
  1. 1.Physiologie de la NutritionUMR U866 INSERM/Université de BourgogneDijonFrance

Personalised recommendations