Skip to main content

Effects of Amylin on Eating and Adiposity

  • Chapter
  • First Online:
Book cover Appetite Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 209))

Abstract

Amylin’s best investigated function is to reduce eating via a meal size effect by promoting meal-ending satiation. This effect seems to depend on an activation of specific area postrema neurons. Brain areas that convey the neural signal to the forebrain include the nucleus of the solitary tract and the lateral parabrachial nucleus. Acute application of amylin modulates the activity of hypothalamic areas involved in the control of eating, namely, the lateral hypothalamic area and possibly the ventromedial hypothalamic nucleus. Amylin also interacts with other satiating signals, such as cholecystokinin, presumably in the brainstem. Interestingly, amylin also exhibits characteristics of adiposity signals; plasma levels of amylin are higher in obese individuals, chronic infusion of amylin into the brain reduces body weight gain and adiposity, and infusion of amylin antagonists increases adiposity. Furthermore, amylin maintains energy expenditure at higher levels than would be expected considering its body weight-lowering effect. However, much less is known (e.g., site of action, signaling pathways, differential activation of brain sites, and, most importantly, physiological relevance) with respect to its role as adiposity signal and regulator of energy expenditure than about its satiating action. Notwithstanding, and perhaps because amylin resistance does not seem to be a general and prohibitive concomitant of obesity, animal data and recent clinical data in humans indicate that amylin is a very promising candidate for the treatment of obesity. Amylin seems to be particularly effective when combined with other hormones such as leptin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD (1996) Chronic infusion of IAPP causes anorexia in rats. Am J Physiol 271:R1654–R1659

    PubMed  CAS  Google Scholar 

  • Arnelo U, Reidelberger R, Adrian TE, Larsson J, Permert J (1998) Sufficiency of postprandial plasma levels of islet amyloid polypeptide for suppression of feeding in rats. Am J Physiol 275:R1537–R1542

    PubMed  CAS  Google Scholar 

  • Banks WA (2008) The blood-brain barrier: connecting the gut and the brain. Regul Pept 149:11–14

    Article  PubMed  CAS  Google Scholar 

  • Banks WA (2010) Blood-brain barrier as a regulatory interface. Forum Nutr 63:102–110

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ (1998) Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19:883–889

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, DiPalma CR, Farrell CL (1999) Impaired transport of leptin across the blood-brain barrier in obesity. Peptides 20:1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Barrachina MD, Martinez V, Wang LX, Wei JY, Tachè Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94:10455–10460

    Article  PubMed  CAS  Google Scholar 

  • Barth SW, Riediger T, Lutz TA, Rechkemmer G (2004) Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res 997:97–102

    Article  PubMed  CAS  Google Scholar 

  • Becskei C, Riediger T, Zund D, Wookey P, Lutz TA (2004) Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 1030:221–233

    Article  PubMed  CAS  Google Scholar 

  • Becskei C, Grabler V, Edwards GL, Riediger T, Lutz TA (2007) Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res 1162:76–84

    Article  PubMed  CAS  Google Scholar 

  • Bhavsar S, Watkins J, Young A (1998) Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64:557–561

    Article  PubMed  CAS  Google Scholar 

  • Boyle CN, Munz M, Wielinga PY, Stöcker D, Lutz TA (2010) Short-term, but not extended, access to palatable diet diminishes amylin responsiveness in rat. Appetite 54:636

    Google Scholar 

  • Boyle CN, Rossier MM, Lutz TA (2011) Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 104(1):20–28

    Article  PubMed  CAS  Google Scholar 

  • Bueter M, Löwenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, Sharkey KA, Lutz T, Le Roux CW (2010) Gastric bypass increases energy expenditure in rats. Gastroenterology 138:1845–1853

    Article  PubMed  Google Scholar 

  • Chapman I, Parker B, Doran S, Feinle-Bisset C, Wishart J, Strobel S, Wang Y, Burns C, Lush C, Weyer C, Horowitz M (2005) Effect of pramlintide on satiety and food intake in obese subjects. Diabetologia 48:838–848

    Article  PubMed  CAS  Google Scholar 

  • Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC (1995) Intraventricular insulin and the level of maintained body weight in rats. Behav Neurosci 109:528–531

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56:235–242

    PubMed  CAS  Google Scholar 

  • Cooper GJ (1994) Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 15:163–201

    PubMed  CAS  Google Scholar 

  • Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 280:R331–R337

    PubMed  CAS  Google Scholar 

  • Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302:703–706

    Article  PubMed  CAS  Google Scholar 

  • Devine E, Young AA (1998) Weight gain in male and female mice with amylin knockout. Diabetes 47:A317

    Google Scholar 

  • Dobolyi A (2009) Central amylin expression and its induction in rat dams. J Neurochem 111:1490–1500

    Article  PubMed  CAS  Google Scholar 

  • Eiden S, Daniel C, Steinbrück A, Schmidt I, Simon E (2002) Salmon calcitonin—a potent inhibitor of food intake in states of impaired leptin signaling in laboratory rodents. J Physiol 541:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Enoki S, Mitsukawa T, Takemura J, Nakazato M, Aburaya J, Toshimori H, Matsukara S (1992) Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15:97–102

    Article  PubMed  CAS  Google Scholar 

  • Fischer JA, Muff R, Born W (2002) Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs). Biochem Soc Trans 30:455–460

    Article  PubMed  CAS  Google Scholar 

  • Geary N (2004) Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav 81:719–733

    Article  PubMed  CAS  Google Scholar 

  • Gedulin BR, Young AA (1998) Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats. Diabetes 47:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gloy VL, Lutz TA, Langhans W, Geary N, Hillebrand JJ (2010) Basal plasma levels of insulin, leptin, ghrelin and amylin do not signal adiposity in rats recovering from forced overweight. Endocrinology 151:4280–4288

    Article  PubMed  CAS  Google Scholar 

  • Grabler V, Lutz TA (2004) Chronic infusion of the amylin antagonist AC 187 increases feeding in Zucker fa/fa rats but not in lean controls. Physiol Behav 81:481–488

    Article  PubMed  CAS  Google Scholar 

  • Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, Nanjo K (1992) Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15:89–96

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand JJ, Geary N (2010) Do leptin and insulin signal adiposity? Forum Nutr 63:111–122

    Article  PubMed  CAS  Google Scholar 

  • Hollander P, Maggs DG, Ruggles JA, Fineman M, Shen L, Kolterman OG, Weyer C (2004) Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obesity Res 12:661–668

    Article  CAS  Google Scholar 

  • Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson-Albertsson C, Arnelo U (2005) Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 5:29–36

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS One 5:e11376

    Article  PubMed  Google Scholar 

  • Leckström A, Lundquist I, Ma Z, Westermark P (1999) Islet amyloid polypeptide and insulin relationship in a longitudinal study of the genetically obese (ob/ob) mouse. Pancreas 18:266–273

    Article  PubMed  Google Scholar 

  • Lutz TA (2006) Amylinergic control of feeding. Physiol Behav 89:465–471

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol 298:R1475–R1484

    CAS  Google Scholar 

  • Lutz TA, Rand JS (1993) A review of new developments in type 2 diabetes in human beings and cats. Br Vet J 149:527–536

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E (1995) Amylin decreases meal size in rats. Physiol Behav 58:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E (1998) Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19:309–317

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Tschudy S, Rushing PA, Scharrer E (2000) Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21:233–238

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E (2001a) The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord 25:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Lutz TA, Riediger T, Rushing PA, Scharrer E (2001b) The anorectic effect of amylin and its interaction with other anorectic signals. Proceedings, Neuropeptide interactions in the control of ingestive behavior, International Conference on the Physiology of Food and Fluid Intake

    Google Scholar 

  • Lutz TA, Bueter M, Hillebrand JJ, Liesegang A, LeRoux CW (2010) Roux-en-Y gastric bypass reduces bone mineral density independent of body weight in rats. Appetite 54:660

    Article  Google Scholar 

  • Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, Vu C, Roth J, Parkes D (2007) Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol 293:R1855–R1863

    CAS  Google Scholar 

  • Martin L, Siliart B, Lutz T, Biourge V, Nguyen P, Dumon H (2010) Postprandial response of plasma insulin, amylin and acylated ghrelin to various test meals in lean and obese cats. Br J Nutr 26:1–10

    Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  PubMed  CAS  Google Scholar 

  • Michel S, Becskei C, Erguven E, Lutz TA, Riediger T (2007) Diet-derived nutrients modulate the effects of amylin on c-Fos expression in the area postrema and on food intake. Neuroendocrinol 86:124–135

    Article  CAS  Google Scholar 

  • Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz TA (2003a) Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 24:91–98

    Article  PubMed  CAS  Google Scholar 

  • Mollet A, Meier S, Riediger T, Lutz TA (2003b) Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 24:155–158

    Article  PubMed  CAS  Google Scholar 

  • Mollet A, Gilg S, Riediger T, Lutz TA (2004) Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81:149–155

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Flood JF, Horowitz M, Morley PM, Walter MJ (1994) Modulation of food intake by peripherally administered amylin. Am J Physiol 67:R178–R184

    Google Scholar 

  • Muff R, Buhlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140:2924–2927

    Article  PubMed  CAS  Google Scholar 

  • Münzberg H (2010) Leptin-signaling pathways and leptin resistance. Forum Nutr 63:123–132

    Article  PubMed  Google Scholar 

  • Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786

    Article  PubMed  CAS  Google Scholar 

  • Osaka T, Tsukamoto A, Koyama Y, Inoue S (2008) Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides 29:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Osto M, Wielinga PY, Alder B, Walser N, Lutz TA (2007) Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav 91:566–572

    Article  PubMed  CAS  Google Scholar 

  • Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT (1994) Direct plasma radioimmunoassay for rat amylin-(1-37): concentrations with acquired and genetic obesity. Am J Physiol 267:E156–E164

    PubMed  CAS  Google Scholar 

  • Potes CS, Lutz TA (2010) Brainstem mechanisms of amylin induced anorexia. Physiol Behav 100:511–518

    Article  PubMed  CAS  Google Scholar 

  • Potes CS, Lutz TA, Riediger T (2010a) Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 1334:31–44

    Article  PubMed  CAS  Google Scholar 

  • Potes CS, Riediger T, Lutz TA (2010b) Amylin induces ERK 1/2 phosphorylation in structures of the AP/NTS-LPB-Ce-BSTL axis. Appetite 54:670

    Article  Google Scholar 

  • Potes C, Turek V, Cole R, Vu C, Roland B, Roth J, Riediger T, Lutz TA (2010c) Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Physiol 299:R623–R631

    CAS  Google Scholar 

  • Qi D, Cai K, Wang O, Li Z, Chen J, Deng B, Qian L, Le Y (2009) Fatty acids induce amylin expression and secretion by pancreatic beta-cells. Am J Physiol Endocrinol Metab 298:E99–E107

    Article  PubMed  Google Scholar 

  • Ravussin E, Smith SR, Mitchell JA, Shringarpure R, Shan K, Maier H, Koda JE, Weyer C (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17:1736–1743

    Article  PubMed  CAS  Google Scholar 

  • Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J (2004) Amylin receptor blockade stimulates food intake in rats. Am J Physiol 287:R568–R574

    CAS  Google Scholar 

  • Reinehr T, de Sousa G, Niklowitz P, Roth CL (2007) Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity (Silver Spring) 15:2006–2011

    Article  CAS  Google Scholar 

  • Riediger T, Schmid HA, Lutz T, Simon E (2001) Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol 281:R1833–R1843

    CAS  Google Scholar 

  • Riediger T, Schmid HA, Lutz TA, Simon E (2002) Amylin and glucose co-activate area postrema neurons of the rat. Neurosci Lett 328:121–124

    Article  PubMed  CAS  Google Scholar 

  • Riediger T, Zünd D, Becskei C, Lutz TA (2004) The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol 286:R114–R122

    CAS  Google Scholar 

  • Riediger T, Michel S, Forster K, Lutz TA (2009) The ability of amylin to reduce eating depends on the protein content of the diet. Appetite 52:854

    Google Scholar 

  • Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:755–760

    Article  PubMed  CAS  Google Scholar 

  • Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM (2006) Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147:5855–5864

    Article  PubMed  CAS  Google Scholar 

  • Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG, Baron AD (2008) Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci USA 105:7257–7262

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Richmond RM (1999) Area postrema and the anorectic actions of dexfenfluramine and amylin. Brain Res 820:86–91

    Article  PubMed  CAS  Google Scholar 

  • Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC (2000) Amylin: a novel action in the brain to reduce body weight. Endocrinology 141:850–853

    Article  PubMed  CAS  Google Scholar 

  • Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D’Alessio DA, Air EL, Woods SC (2001) Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142:5035–5038

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52:232–238

    Article  PubMed  CAS  Google Scholar 

  • Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K (1994) In vitro autoradiographic localization of amylin binding sites in rat brain. Neurosci 62:553–567

    Article  CAS  Google Scholar 

  • Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud H-R (2010) Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 151:1588–1597

    Article  PubMed  CAS  Google Scholar 

  • Smith GP, Gibbs J (1985) The satiety effect of cholecystokinin. Recent progress and current problems. Ann N Y Acad Sci 448:417–423

    Article  PubMed  CAS  Google Scholar 

  • Surina-Baumgartner DM, Langhans W, Geary N (1995) Hepatic portal insulin antibody infusion increases, but insulin does not alter, spontaneous meal size in rats. Am J Physiol 269:R978–R982

    PubMed  CAS  Google Scholar 

  • Sutton GM, Patterson LM, Berthoud HR (2004) Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J Neurosci 24:10240–10247

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis JL, Coffey T, Cole R, Lei C, Wittmer C, Walsh B, Weyer C, Koda J, Baron AD, Parkes DG, Roth JD (2008) Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149:5679–5687

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2010) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity 18:21–26

    Article  PubMed  CAS  Google Scholar 

  • Turek VF, Trevaskis JL, Levin BE, Dunn-Meynell AA, Irani B, Gu G, Wittmer C, Griffin PS, Vu C, Parkes DG, Roth J (2010) Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151:143–152

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Ugawa S, Saishin Y, Shimada S (2001) Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 93:36–45

    Article  PubMed  CAS  Google Scholar 

  • West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246:R776–R787

    PubMed  CAS  Google Scholar 

  • Weyer C, Maggs DG, Young AA, Kolterman OG (2001a) Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 7:1353–1373

    Article  PubMed  CAS  Google Scholar 

  • Weyer C, Vozarova B, Ravussin E, Tataranni PA (2001b) Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes 25:593–600

    Article  CAS  Google Scholar 

  • Wielinga PY, Alder B, Lutz TA (2007) The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav 91:212–217

    Article  PubMed  CAS  Google Scholar 

  • Wielinga PY, Muff S, Alder B, Woods SC, Lutz TA (2008) Amylin levels in the brain influence the level of body weight maintenance implying that amylin acts as adiposity signal. Int J Obes 32:S51

    Google Scholar 

  • Wielinga PY, Löwenstein C, Muff S, Munz M, Woods SC, Lutz TA (2010) Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav 101:45–52

    Article  PubMed  CAS  Google Scholar 

  • Williams DL, Cummings DE (2005) Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr 135:1320–1325

    PubMed  CAS  Google Scholar 

  • Woods SC (2004) Gastrointestinal satiety signals. I. An overview of gastrointestinal signals that influence food intake. Am J Physiol 286:G7–G13

    CAS  Google Scholar 

  • Woods SC (2005) Signals that influence food intake and body weight. Physiol Behav 86:709–716

    Article  PubMed  CAS  Google Scholar 

  • Woods SC, Lutz TA, Geary N, Langhans W (2006) Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 361:1219–1235

    Article  PubMed  CAS  Google Scholar 

  • Young A (2005a) Amylin: physiology and pharmacology. Adv Pharmacol 52:1–66

    Article  PubMed  CAS  Google Scholar 

  • Young A (2005b) Amylin and the integrated control of nutrient flux. Adv Pharmacol 52:67–77

    Article  PubMed  CAS  Google Scholar 

  • Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 14:524–527

    Article  PubMed  CAS  Google Scholar 

  • Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22:4860–4868

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Our work has been financially supported by the Swiss National Science Foundation. The support of the Zurich Center of Integrative Human Physiology, the Novartis Foundation, the Olga Mayenfisch Foundation, the Vontobel Foundation, and the Ciba-Geigy Jubilee Foundation are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Alexander Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lutz, T.A. (2012). Effects of Amylin on Eating and Adiposity. In: Joost, HG. (eds) Appetite Control. Handbook of Experimental Pharmacology, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24716-3_10

Download citation

Publish with us

Policies and ethics