Skip to main content

Zusammenfassung

Die Entwicklung der für die Digestion verantwortlichen Enzymsysteme ist eng mit der Entwicklung des fetalen Pankreas und des Dünndarms sowie der Speicheldrüsen korreliert. Morphologisch beginnt die Entwicklung der fetalen Speicheldrüsen und des Pankreas in der 12. Schwangerschaftswoche. Bis zur 20. Woche ist diese Entwicklung morphologisch so weit abgeschlossen, dass die exokrinen Drüsen beginnen, ihre Enzyme freizusetzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 4.1

  • Boehm G, Lidestri M, Casetta P et al. (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal 86: F178–181

    Article  CAS  Google Scholar 

  • Boocock GRB, Morrison JA, Popovic M et al. (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Casademont J, Barrientos A, Cardellach F et al. (1994) Multiple deletions of mtDNA in two brothers with sideroblastic anemia and mitochondrial myopathy and in their asymptomatic mother. Hum Mol Genet 3: 1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Cipolli M, D‘Orazio C, Delmarco A et al. (1999) Shwachman‘s syndrome: pathomorphosis and long-term outcome. J Pediatr Gastroenterol Nutr 29: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Dourov N, Buyl-Strouvens ML (1969) Agénésie du pancréas: observation anatomo-clinique d’un cas de diabète sucre, avec stéatorrhée et hypotrophie, chez un nouveau-né. Arch Franc Pediat 26: 641–650

    PubMed  CAS  Google Scholar 

  • Fleitz J, Rumelhart S, Goldman F et al. (2002) Successful allogeneic hematopoietic stem cell transplantation (HSCT) for Shwachman-Diamond syndrome. Bone Marrow Transplant 29: 75

    Article  PubMed  CAS  Google Scholar 

  • Goobie S, Morrison J, Ginzberg H et al. (1999) Exclusion of linkage of Shwachman-Diamond syndrome to chromosome regions 6q and 12q implicated by a de novo translocation. Am J Med Genet 85: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Johanson AJ., Blizzard RM (1971) A syndrome of congenital aplasia of the alae nasi, deafness, hypothyroidism, dwarfism, absent permanent teeth, and malabsorption. J Pediat. 79: 982–987

    Article  PubMed  CAS  Google Scholar 

  • Moro GE, Mosca F, Miniello V et al. (2003) Effects of a new mixture of prebiotics on faecal flora and stools in term infants. Acta Paediatr 441 (Suppl 91): 77–79

    Google Scholar 

  • Pearson HA, Lobel JS, Kocoshis SA et al. (1979) A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr 95: 976–984

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse DW, Kennedy EP, Mascaro AA et al. (2011) The novel triad of dorsal agenesis of the pancreas with concurrent pancreatic ductal adenocarcinoma and non-alcoholic chronic calcific pancreatitis: a case series and review of the literature. J Gastrointest Surg 15: 1643–1649

    Article  PubMed  Google Scholar 

  • Rotig A, Cormier V, Koll F et al. (1991) Site-specific deletions of the mitochondrial genome in the Pearson marrow-pancreas syndrome. Genomics 10: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Shwachman H, Diamond LK, Oski FA, Khaw KT (1964) The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr 65: 645–663

    Article  PubMed  CAS  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Winter WE, Maclaren NK, Riley WJ et al. (1986) Congenital pancreatic hypoplasia: a syndrome of exocrine and endocrine pancreatic insufficiency. J Pediatr 109: 465–468

    Article  PubMed  CAS  Google Scholar 

  • Zenker M, Mayerle J, Lerch MM et al. (2005) Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nature Genet 37: 1345–1350

    Article  PubMed  CAS  Google Scholar 

Literatur zu Abschn. 4.2

  • Auricchio S, Rubino A, Muerset G (1965) Intestinal glycosidase activities in the human embryo, fetus, and newborn. Pediatrics 35: 944–954

    PubMed  CAS  Google Scholar 

  • Hopkins B, Brice AL, Schofield PN, Baralle FE, Graham CF (1987) Identity of cells containing apolipoprotein B messenger RNA, in 6- to 12-week postfertilization human embryos. Development 100: 83–93

    PubMed  CAS  Google Scholar 

  • Lacroix B, Kedinger M, Simon-Assmann P, Haffen K (1984) Early organogenesis of human small intestine: scanning electron microscopy and brush border enzymology.Gut 25: 925–930

    Article  PubMed  CAS  Google Scholar 

  • Neu J, Koldovsky O (1996) Nutrient absorption in the preterm neonate. Clin Perinatol 23: 229–243

    PubMed  CAS  Google Scholar 

  • Roberton DM, Paganelli R, Dinwiddie R, Levinsky RJ (1982) Milk antigen absorption in the preterm and term neonate. Arch Dis Child 57: 369–372

    Article  PubMed  CAS  Google Scholar 

Literatur zu Abschn. 4.3

  • Chitkara DK, Di Lorenzo C (2006) From the bench to the „crib“-side: implications of scientific advances to paediatric neurogastroenterology and motility. Neurogastroenterol Motil 18 (4): 251–262

    Article  PubMed  CAS  Google Scholar 

  • Boccia G, Staiano A (2008) Normal motility and development of the intestinal neuroenteric system. In: Kleinman RE, Goulet O-J, Mieli-Vergani G et al. (eds) Walker’s pediatric gastrointestinal disease. Pathophysiology, diagnosis, management. Decker, Hamilton, pp 665–674

    Google Scholar 

  • Goulet O, Colomb-Jung V, Joly F (2009) Role of the colon in short bowel syndrome and intestinal transplantation. J Pediatr Gastroenterol Nutr 48 (Suppl 2): S66–S71

    Article  Google Scholar 

  • Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68: 307–343

    Article  PubMed  CAS  Google Scholar 

  • Schemann M (2005) Control of gastrointestinal motility by the „gut brain“ – the enteric nervous system. J Pediatr Gastroenterol Nutr 41 (Suppl 1): S4–S6

    Article  Google Scholar 

  • Wallace AS, Burns AJ. (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319: 367–382

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 4.4

  • Brostoff J, Challacombe SJ (2002) Food allergy and intolerance, 2nd edn. Saunders, London

    Google Scholar 

  • Kindt TJ, Osborne BA, Goldsby RA (2006) Kuby immunology, 6th edn. Freeman, New York

    Google Scholar 

  • Kagnoff MF, Kiyono H (1996) Mucosal immunology. Academic Press, San Diego

    Google Scholar 

  • Mac Dermontt RP, Elson CO (1991) Mucosal immunoloy I: Basic principles. Gastroenterol Clin North Am 20: 3

    Google Scholar 

  • Rumbo M, Schiffrin EJ (2005) Ontogeny of intestinal epithelium immune functions: Developmental and environmental regulation. Cell Mol Life Sci 62 (12): 1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Stiehm ER, Ochs HD, Winkelstein JA (2004) Immunologic disorders in infants & children, 5th edn. Elsevier, Philadelphia

    Google Scholar 

Literatur zu Abschn. 4.6

  • Alfalah M, Jacob R, Preuss U et al. (1999) O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr Biol 9 (11): 593–596

    Article  PubMed  CAS  Google Scholar 

  • Jacob R, Peters K, Naim HY (2002a) The prosequence of human lactase-phlorizin hydrolase modulates the folding of the mature enzyme. J Biol Chem 277 (10): 8217–825

    Article  PubMed  CAS  Google Scholar 

  • Jacob R, Purschel B, Naim HY (2002b) Sucrase is an intramolecular chaperone located at the C-terminal end of the sucrase-isomaltase enzyme complex. J Biol Chem 277 (35): 32141–3218

    Article  PubMed  CAS  Google Scholar 

  • Naim HY, Sterchi EE, Lentze MJ (1988a) Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem 263 (15): 7242–7253

    PubMed  CAS  Google Scholar 

  • Naim HY, Sterchi EE, Lentze MJ (1988b) Structure, biosynthesis, and glycosylation of human small intestinal maltase-glucoamylase. J Biol Chem 263 (36): 19709–19717

    PubMed  CAS  Google Scholar 

  • Nichols BL, Avery S, Sen P et al. (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci USA 100 (3): 1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Takesue Y, Yokota K, Nishi Y, Taguchi R, Ikezawa H (1986) Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C. FEBS Lett 201 (1): 5–8

    Article  PubMed  CAS  Google Scholar 

  • Wacker H, Keller P, Falchetto R, Legler G, Semenza G (1992) Location of the two catalytic sites in intestinal lactase-phlorizin hydrolase. Comparison with sucrase-isomaltase and with other glycosidases, the membrane anchor of lactase-phlorizin hydrolase. J Biol Chem 267 (26): 18744–18752

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lentze, M.J., Koletzko, S., Zimmer, KP., Naim, H.Y. (2013). Embryologie und Physiologie. In: Rodeck, B., Zimmer, KP. (eds) Pädiatrische Gastroenterologie, Hepatologie und Ernährung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24710-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24710-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24709-5

  • Online ISBN: 978-3-642-24710-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics